

Procn Gerias 230 Rubber Jaints

Proco Series 230 Rubber Expansion Joints are designed for piping systems to absorb pipe movements, relieve stress, reduce system noise/vibration, compensate for misalignment/offset and to protect rotating mechanical equipment against start-up surge forces.
The Style 231 and FA231: Single wide-arch product and work horse for industrial applications available in open arch and filled arch configurations.
The Style 232 and FA232: Double wide-arch product where more movement is needed. Available in open arch and filled arch configurations.
The Style 233 and FA233: Triple wide-arch product where most movement is needed. Available in open arch and filled arch configurations.

Features and Benefits:

Absorbs Directional Movement

Thermal movements appear in any rigid pipe system due to temperature changes. The Series 230 wide arch expansion joints allow for axial compression or axial extension, lateral deflection as well as angular and torsional movements. (Note: Rated movements in this publication are based on one plane movements.
Multiple movement conditions are based on a multiple movement calculation.)
Less Turbulence or Material Entrapment
The Series 230 expansion joints are manufactured with the integral rubber flange joining the body at a true 90° angle. This ensures the product will install snug against the mating pipe flange free of voids creating less turbulence in the pipe system. The Series 230 is also available with a filled arch for applications that have 20% or more solids in the process.

Absorbs Vibration, Noise and Shock

The Proco Series 230 rubber expansion joints effectively dampen and insulate downstream piping against the transmission of noise and vibration generated by mechanical equipment. Noise and vibrations caused by equipment can cause stress in pipe, pipe guides, anchors and other equipment downstream. The Series 230 expansion joints will help relieve noise and vibration occurrences in a pipe system. Water hammer and pumping impulses can also cause strain, stress or shock to a piping system. Install the Series 230 to help compensate for these system pressure spikes.
Compensates for Misalignment
Rubber expansion joints are commonly used by contraccors and plant personnel to allow for slight pipe misalignment during installation of new piping and or replacement applications. (Although rubber expansion joints can be made with permanent offsets, it is suggested that piping misalignments be limited to no more than $1 / 8^{\prime \prime}$ per the Fluid Sealing Association Piping Expansion Technical Handbook www.fluidsealing.com.)

Wide Service Range and Less Weight

Engineered to operate up to 200 PSIG (nominal size dependent) Or up to $250^{\circ} \mathrm{F}$ (elastomer dependent), the Series 230 can be specified for a wide range of piping system requirements. The Series 230 rubber expansion joints are constructed in various elastomers with rubber impregnated polyester tire cord and reinforced with wire to create a product with greater operating performance.

Material Identification

All Series 230 expansion joints are strip branded with cure dates and elastomer designations.

All Neoprene Tube/Neoprene Cover (NN) and Nitrile Tube/Neoprene Cover (NP) elastomer designoted joints meet the Coast Guard Requirements and conform to ASTM F 1123-87. EE-NSF/61 - ANSI/NSF Standard 61 standards were developed by the National Sanitation Foundation (NSF), and the American National Standards Institute (ANSI) and relates to water treatment which establishes stringent requirements for the control of equipment that comes in contact with either potable water or products that support the production of potable water
Large Inventory
Proco Products, Inc. maintains one of the largest inventories of rubber expansion joints in the world. Please contact us for price and availability.

Protecting Piping and Equipment

 Systems from Stress/Motion
Table 1: Available Materials - Temperatures

For Specific Chemical Compatibilities, See:

PROCO "Chemical To Elastomer Guide"

Material Code	Cover 1,2 Elastomer	Tube 1,2 Elastomer	Maximum Operating Temp. ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Branding } \\ \text { Label } \end{array} \\ \text { Color } \end{array}$	FS.A. Material Class
BB	Chlorobutyl	Chlorobuty	250° (1219)	Black	STD. III
E	EPDM	EPDM	$250^{\circ}\left(121^{\circ}\right)$	Red	STD. III
EE-NSF67 ${ }^{6}$	EPDM	EPDM	$250^{\circ}\left(121^{\circ}\right)$	Red	STD. III
EO	EPDM	FDAEPDM	$250^{\circ}\left(121^{\circ}\right)$	Red ${ }^{3}$	STD. II
NH	Neoprene	CSM	$212^{\circ}\left(100^{\circ}\right)$	Green	STD. II
NN	Neoprene	Neoprene	225° (1070)	Blue	STD. II
NF	Neoprene	FDA-Neoprene	$225^{\circ}\left(107^{\circ}\right)$	Blue ${ }^{3}$	STD. II
NP	Neoprene	Nitrile	$212^{\circ}\left(100^{\circ}\right)$	Yellow	STD. II
NR	Neoprene	Natural Rubber	$180^{\circ}\left(82^{\circ}\right)$	White	STD. 1
NG	Neoprene	Natural Gum	180° (820)	Tan	STD. 1

Notes: All Products are eeinforced with Polvester Tire Cord

1. Expansion Joint "Cover" can be coated with CSM UV Resistant Coating.
2. All NN \& NP elastomer designted joints meet the Coast Guard Requirements and conform to ASTM F 1123-87 and ree marked accordingly.
3. Branding Label will be marked as "Food Grade".
4. All elastomers above are not intended for steam service
5. BB or EE are good for 300° Fblower service at 20 PSI or less.
6. EE-NSF/6T UL Classified Water Quality

Style 231 Performance Data

Table 2：Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom．I．D． Inch／（mm）		Neutral 10 Length Inch／（mm）		231 Movement Capability：1，2 From Neutral Position（Non－Concurrent）					Operating Conditions ${ }^{3}$			Weights lbs／（kgs）${ }^{4}$				
				흔 헿 흫 흘 흘 르				틍 0 0 0 0 0 0 0 0		$\begin{aligned} & \text { 言 } \\ & \text { 言 } \\ & \text { 言 } \\ & \text { 亲 } \end{aligned}$	－⿹ㅡㄹ	흥 흘 흥 훌				
1	（25）			6	（152）	$\begin{aligned} & 0.6 \\ & (20) \end{aligned}$	$\begin{gathered} 0.4 \\ (10) \end{gathered}$	$\begin{gathered} 0.5 \\ (12) \end{gathered}$	50.4	2	$\begin{aligned} & 5.31 \\ & (35) \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 2.0 \\ (0.8) \end{gathered}$	$\begin{gathered} 2.0 \\ (0.8) \end{gathered}$	$\begin{gathered} 2.3 \\ (1.0) \end{gathered}$
1.25	（32）	6	（152）	$\begin{gathered} 0.8 \\ (20) \end{gathered}$	$\begin{gathered} 0.4 \\ (10) \end{gathered}$	$\begin{gathered} 0.5 \\ (12) \end{gathered}$	43.1	2	$\begin{aligned} & 6.38 \\ & (47) \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 2.5 \\ (1.1) \end{gathered}$	$\begin{gathered} 2.5 \\ (1.1) \end{gathered}$	$\begin{gathered} 2.3 \\ (1.0) \end{gathered}$		
1.5	（40）	6	（152）	$\begin{gathered} 0.8 \\ (20) \end{gathered}$	$\begin{gathered} 0.4 \\ (10) \end{gathered}$	$\begin{gathered} 0.5 \\ (12) \end{gathered}$	38.1	2	$\begin{aligned} & 7.55 \\ & (49) \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 3.0 \\ (1.4) \end{gathered}$	$\begin{gathered} 2.5 \\ (1.1) \end{gathered}$	$\begin{gathered} 2.3 \\ (1.0) \end{gathered}$		
2	（50）	$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & (152) \\ & (178) \\ & (203) \\ & (229) \\ & (254) \\ & (305) \end{aligned}$	$\begin{gathered} 1.4 \\ (35) \end{gathered}$	$\begin{gathered} 0.7 \\ (17) \end{gathered}$	$\begin{gathered} 0.6 \\ (16) \end{gathered}$	34.2	2	$\begin{gathered} 12.57 \\ (81) \end{gathered}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 4.0 \\ (1.8) \end{gathered}$	$\begin{gathered} 4.0 \\ (1.8) \end{gathered}$	$\begin{gathered} 2.8 \\ (1.3) \end{gathered}$		
2.5	（65）	$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & (152) \\ & (178) \\ & (203) \\ & (229) \\ & (254) \\ & (305) \end{aligned}$	$\begin{gathered} 1.4 \\ (35) \end{gathered}$	$\begin{gathered} 0.7 \\ (17) \end{gathered}$	$\begin{gathered} 0.6 \\ (16) \end{gathered}$	27.6	2	$\begin{aligned} & 15.90 \\ & (103) \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 4.5 \\ (2.0) \end{gathered}$	$\begin{gathered} 4.5 \\ (2.0) \end{gathered}$	$\begin{gathered} 2.8 \\ (1.3) \end{gathered}$		
3	（80）	$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline(152) \\ & (178) \\ & (203) \\ & (229) \\ & (254) \\ & (305) \end{aligned}$	$\begin{gathered} 1.4 \\ (35) \end{gathered}$	$\begin{gathered} 0.7 \\ (17) \end{gathered}$	$\begin{gathered} 0.6 \\ (16) \end{gathered}$	23.0	2	$\begin{aligned} & 19.64 \\ & (127) \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 5.5 \\ (2.5) \end{gathered}$	$\begin{gathered} 5.5 \\ (2.5) \end{gathered}$	$\begin{gathered} 2.8 \\ (1.3) \end{gathered}$		
4	（100）	$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline(152) \\ & (178) \\ & (203) \\ & (229) \\ & (254) \\ & (305) \end{aligned}$	$\begin{gathered} 1.4 \\ (35) \end{gathered}$	$\begin{gathered} 0.7 \\ (17) \end{gathered}$	$\begin{gathered} 0.6 \\ (16) \end{gathered}$	18.8	2	$\begin{aligned} & 28.27 \\ & (182) \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.6) \end{gathered}$	$\begin{gathered} 8.0 \\ (3.6) \end{gathered}$	$\begin{gathered} 2.8 \\ (1.3) \end{gathered}$		
5	（125）	6 7 8 9 10 12	$\begin{aligned} & \hline(152) \\ & (178) \\ & (203) \\ & (229) \\ & (254) \\ & (305) \end{aligned}$	1.6 （40）	0.8 (20)	$\begin{gathered} 0.7 \\ (18) \end{gathered}$	15.2	2	$\begin{aligned} & 43.01 \\ & (277) \end{aligned}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.1) \end{gathered}$	$\begin{gathered} 8.5 \\ (3.9) \end{gathered}$	$\begin{gathered} 4.0 \\ (1.8) \end{gathered}$		

Style 231 Performance Data continued．．．

Table 2：Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom．I．D． Inch／（mm）		Neutral 10 Length Inch／（mm）		231 Movement Capability：${ }^{1,2}$ From Neutral Position（Non－Concurrent）					Operating Conditions ${ }^{3}$			Weights lbs／（kgs）${ }^{4}$				
		$\begin{aligned} & \text { 흔 } \\ & \text { 旁 } \\ & \text { 틀 } \\ & \text { 를 틀 } \end{aligned}$						\bar{z} 0 0 \vdots 0 0 0 \vdots 0		$\begin{aligned} & \text { 흥 } \\ & \text { 宮 } \\ & \text { 흔 } \\ & \text { 亲 } \end{aligned}$	을	$\begin{aligned} & \text { 흥 } \\ & \text { 응 } \\ & \text { 을 흘 } \end{aligned}$				
6	（150）			$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & (152) \\ & (178) \\ & (203) \\ & (229) \\ & (254) \\ & (305) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{gathered} 0.7 \\ (18) \end{gathered}$	12.8	2	$\begin{aligned} & 55.42 \\ & (358) \end{aligned}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 11.0 \\ & (5.0) \end{aligned}$	$\begin{gathered} 9.5 \\ (4.3) \end{gathered}$	$\begin{gathered} 4.0 \\ (1.8) \end{gathered}$
8	（200）	$\begin{gathered} 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 12 \\ 14 \end{gathered}$	$\begin{aligned} & (152) \\ & (178) \\ & (203) \\ & (229) \\ & (254) \\ & (305) \\ & (356) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{gathered} 0.7 \\ \text { (18) } \end{gathered}$	9.7	2	$\begin{aligned} & 89.95 \\ & (580) \end{aligned}$	$\begin{aligned} & 190 \\ & (13) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 15.0 \\ & (6.8) \end{aligned}$	$\begin{aligned} & 14.5 \\ & (6.6) \end{aligned}$	$\begin{gathered} 8.0 \\ (3.6) \end{gathered}$		
10	（250）	$\begin{gathered} 8 \\ 9 \\ 10 \\ 12 \\ 14 \end{gathered}$	（203） （229） （254） （305） （356）	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	0.7 (18)	9.1	2	$\begin{gathered} 120.76 \\ (779) \end{gathered}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 23.0 \\ (10.4) \end{gathered}$	$\begin{aligned} & 17.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (4.5) \end{aligned}$		
12	（300）	$\begin{gathered} 8 \\ 9 \\ 10 \\ 12 \\ 14 \end{gathered}$	（203） （229） （254） （305） （356）	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	7.6	2	$\begin{aligned} & 172.03 \\ & (1110) \end{aligned}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 34.0 \\ (15.4) \end{gathered}$	$\begin{gathered} 24.5 \\ (11.0) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (4.5) \end{aligned}$		
14	（350）	$\begin{aligned} & 8 \\ & 9 \\ & 10 \\ & 12 \\ & 14 \end{aligned}$	（203） （229） （254） （305） （356）	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	6.5	2	$\begin{aligned} & 221.67 \\ & (1430) \end{aligned}$	$\begin{aligned} & 130 \\ & (9.0) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 40.0 \\ (18.1) \end{gathered}$	$\begin{gathered} 27.0 \\ (12.3) \end{gathered}$	$\begin{aligned} & 12.0 \\ & (5.4) \end{aligned}$		
16	（400）	$\begin{gathered} 8 \\ 9 \\ 10 \\ 12 \\ 14 \end{gathered}$	$\begin{aligned} & \hline(203) \\ & (229) \\ & (254) \\ & (305) \\ & (356) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	5.7	2	$\begin{aligned} & 277.59 \\ & (1791) \end{aligned}$	$\begin{gathered} 115 \\ (8.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 47.0 \\ (21.3) \end{gathered}$	$\begin{gathered} 33.5 \\ (15.2) \end{gathered}$	$\begin{aligned} & 15.0 \\ & (6.8) \end{aligned}$		
18	（450）	$\begin{aligned} & 8 \\ & 9 \\ & 10 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(203) \\ & (229) \\ & (254) \\ & (305) \\ & (356) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	5.1	2	$\begin{gathered} 339.80 \\ (2192) \end{gathered}$	$\begin{aligned} & 115 \\ & (8.0) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 56.0 \\ (25.4) \end{gathered}$	$\begin{gathered} 34.0 \\ (15.5) \end{gathered}$	$\begin{aligned} & 16.0 \\ & (7.2) \end{aligned}$		
20	（500）	$\begin{aligned} & 8 \\ & 9 \\ & 10 \\ & 12 \\ & 14 \end{aligned}$	（203） （229） （254） （305） （356）	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	5.7	2	$\begin{aligned} & 408.28 \\ & (2634) \end{aligned}$	$\begin{gathered} 115 \\ (8.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 67.0 \\ (30.4) \end{gathered}$	$\begin{gathered} 38.0 \\ (17.3) \end{gathered}$	$\begin{aligned} & 16.0 \\ & (7.2) \end{aligned}$		

Table 2: Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom. I.D. Inch / (mm)		$\begin{aligned} & \text { Neutral }{ }^{10} \\ & \text { Length } \\ & \text { Inch / } /(\mathbf{m m}) \end{aligned}$		231 Movement Capability: ${ }^{1,2}$ From Neutral Position (Non-Concurrent)					Operating Conditions ${ }^{3}$			Weights lbs / (kgs) ${ }^{4}$				
								\bar{Z} 0 0 0 0 0 0 0		흥 흔 흘 亳	을	흘 흘 응				
22	(550)			$\begin{aligned} & 10 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & (254) \\ & (305) \\ & (356) \\ & \hline \end{aligned}$	$\begin{gathered} 2.0 \\ (50) \end{gathered}$	$\begin{aligned} & 1.0 \\ & (25) \end{aligned}$	$\begin{gathered} 0.9 \\ (23) \end{gathered}$	5.2	2	$\begin{aligned} & 498.76 \\ & (3218) \end{aligned}$	$\begin{gathered} 100 \\ (7.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 70.0 \\ (31.8) \end{gathered}$	$\begin{gathered} 44.0 \\ (20.0) \end{gathered}$	$\begin{aligned} & 19.0 \\ & (8.6) \end{aligned}$
24	(600)	$\begin{aligned} & 10 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(254) \\ & (305) \\ & (356) \end{aligned}$	$\begin{gathered} 2.0 \\ (50) \end{gathered}$	$\begin{aligned} & 1.0 \\ & (25) \end{aligned}$	$\begin{gathered} 0.9 \\ (23) \end{gathered}$	4.8	2	581.76 (3749)	$\begin{aligned} & 100 \\ & (7.0) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 79.0 \\ (35.8) \end{gathered}$	$\begin{gathered} 48.0 \\ (21.8) \end{gathered}$	$\begin{aligned} & 20.0 \\ & (9.0) \end{aligned}$		
26	(650)	$\begin{aligned} & 10 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(254) \\ & (305) \\ & (356) \end{aligned}$	$\begin{gathered} 2.0 \\ (50) \end{gathered}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 0.9 \\ (23) \end{gathered}$	4.4	2	$\begin{aligned} & 669.66 \\ & (4320) \end{aligned}$	$\begin{gathered} 90 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 100.0 \\ & (45.4) \end{aligned}$	$\begin{gathered} 51.0 \\ (23.1) \end{gathered}$	$\begin{aligned} & 20.0 \\ & (9.0) \end{aligned}$		
28	(700)	$\begin{aligned} & 10 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(254) \\ & (305) \\ & (356) \end{aligned}$	$\begin{gathered} 2.0 \\ (50) \end{gathered}$	$\begin{aligned} & 1.0 \\ & (25) \end{aligned}$	$\begin{aligned} & 0.9 \\ & (23) \end{aligned}$	4.1	2	$\begin{gathered} 764.54 \\ (4933) \end{gathered}$	$\begin{gathered} 90 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 102.0 \\ & \text { (46.3) } \end{aligned}$	$\begin{gathered} 55.0 \\ (25.0) \end{gathered}$	$\begin{gathered} 28.0 \\ (12.6) \end{gathered}$		
30	(750)	$\begin{aligned} & 10 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(254) \\ & (305) \\ & (356) \\ & \hline \end{aligned}$	$\begin{gathered} 2.0 \\ (50) \end{gathered}$	$\begin{aligned} & 1.0 \\ & (25) \end{aligned}$	$\begin{aligned} & 0.9 \\ & (23) \end{aligned}$	2.2	2	$\begin{gathered} 865.70 \\ (5585) \end{gathered}$	$\begin{gathered} 90 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 117.0 \\ & (53.1) \end{aligned}$	$\begin{gathered} 63.0 \\ (28.6) \end{gathered}$	$\begin{array}{r} 29.5 \\ (13.3) \end{array}$		
32	(800)	$\begin{aligned} & 10 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \text { (254) } \\ & (305) \\ & (356) \\ & \hline \end{aligned}$	$\begin{gathered} 2.0 \\ (50) \end{gathered}$	$\begin{aligned} & 1.0 \\ & (25) \end{aligned}$	$\begin{aligned} & 0.9 \\ & (23) \end{aligned}$	3.6	2	$\begin{gathered} 973.14 \\ (6278) \end{gathered}$	$\begin{gathered} 90 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 120.0 \\ & (54.4) \end{aligned}$	$\begin{gathered} 68.0 \\ (30.8) \end{gathered}$	$\begin{gathered} 33.0 \\ (14.9) \end{gathered}$		
34	(850)	$\begin{aligned} & 10 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(254) \\ & (305) \\ & (356) \\ & \hline \end{aligned}$	$\begin{gathered} 2.0 \\ (50) \end{gathered}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{aligned} & 0.9 \\ & (23) \end{aligned}$	3.4	2	$\begin{gathered} 1086.87 \\ (7012) \end{gathered}$	$\begin{gathered} 90 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 122.0 \\ & \text { (55.3) } \end{aligned}$	$\begin{gathered} 72.0 \\ (32.7) \end{gathered}$	$\begin{gathered} 43.0 \\ (19.5) \end{gathered}$		
36	(900)	$\begin{aligned} & 10 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & (254) \\ & (305) \\ & (356) \end{aligned}$	$\begin{gathered} 2.0 \\ (50) \end{gathered}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 0.9 \\ (23) \end{gathered}$	3.2	2	$\begin{gathered} 1206.87 \\ (7786) \end{gathered}$	$\begin{gathered} 90 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 143.0 \\ & (64.9) \end{aligned}$	$\begin{gathered} 76.0 \\ (34.5) \end{gathered}$	$\begin{gathered} 43.0 \\ (19.5) \end{gathered}$		
38	(950)	$\begin{aligned} & 10 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(254) \\ & (305) \\ & (356) \\ & \hline \end{aligned}$	$\begin{gathered} 2.0 \\ (50) \end{gathered}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{aligned} & 0.9 \\ & (23) \end{aligned}$	3.0	2	$\begin{gathered} 1333.16 \\ (8601) \end{gathered}$	$\begin{gathered} 90 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 162.0 \\ & (73.5) \end{aligned}$	$\begin{gathered} 86.0 \\ (39.0) \end{gathered}$	$\begin{gathered} 43.0 \\ (19.5) \end{gathered}$		
40	(1000)	$\begin{aligned} & 10 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & (254) \\ & (305) \\ & (356) \\ & \hline \end{aligned}$	$\begin{gathered} 2.0 \\ (50) \end{gathered}$	$\begin{aligned} & 1.0 \\ & (25) \end{aligned}$	$\begin{gathered} 0.9 \\ (23) \end{gathered}$	2.9	2	$\begin{gathered} 1465.74 \\ (9456) \end{gathered}$	$\begin{gathered} 90 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 173.0 \\ & (78.5) \end{aligned}$	$\begin{aligned} & 100.0 \\ & (45.5) \end{aligned}$	$\begin{gathered} 43.0 \\ (19.5) \end{gathered}$		
42	(1050)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \end{aligned}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	1.2 (30)	1.1 (28)	3.3	2	1661.90 (10722)	$\begin{gathered} 80 \\ (5.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 193.0 \\ & (87.5) \end{aligned}$	$\begin{aligned} & 100.0 \\ & (45.5) \end{aligned}$	$\begin{gathered} 44.0 \\ (20.0) \end{gathered}$		
44	(1100)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & (305) \\ & (356) \end{aligned}$	2.4 (60)	$\begin{aligned} & 1.2 \\ & (30) \end{aligned}$	1.1 (28)	3.1	2	$\begin{aligned} & 1809.56 \\ & (11675) \end{aligned}$	$\begin{gathered} 80 \\ (5.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 198.0 \\ & (89.8) \end{aligned}$	$\begin{aligned} & 104.0 \\ & (37.2) \end{aligned}$	$\begin{aligned} & 44.0 \\ & (20.0) \end{aligned}$		
46	(1150)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \end{aligned}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	1.2 (30)	1.1 (28)	3.0	2	$\begin{aligned} & 1963.50 \\ & (12668) \end{aligned}$	$\begin{gathered} 80 \\ (5.5) \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{aligned} & 205.0 \\ & (93.0) \end{aligned}$	$\begin{aligned} & 127.0 \\ & (57.6) \end{aligned}$	$\begin{gathered} 44.0 \\ (20.0) \end{gathered}$		

Gtyle 231 Performance Data continued...

Table 2: Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom. I.D. Inch / (mm)		$\begin{aligned} & \text { Neutral }{ }^{10} \\ & \text { Length } \\ & \text { Inch } /(\mathbf{m m}) \end{aligned}$		231 Movement Capability: ${ }^{1,2}$ From Neutral Position (Non-Concurrent)					Operating Conditions ${ }^{3}$			Weights lbs / (kgs) ${ }^{4}$				
										$\begin{aligned} & \text { ㅎㅡㅡ } \\ & \text { 言 } \\ & \text { 흘 } \\ & \text { 妾 } \end{aligned}$	-					
48	(1200)			$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \end{aligned}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	$\begin{array}{r} 1.2 \\ (30) \\ \hline \end{array}$	$\begin{aligned} & 1.1 \\ & \text { (28) } \end{aligned}$	2.9	2	$\begin{aligned} & 2123.72 \\ & (13700) \end{aligned}$	$\begin{gathered} 80 \\ (5.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 211.0 \\ & (95.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 132.0 \\ & (59.9) \end{aligned}$	$\begin{aligned} & \hline 44.0 \\ & (20.0) \end{aligned}$
50	(1250)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \end{aligned}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	$\begin{aligned} & 1.2 \\ & (30) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & \text { (28) } \\ & \hline \end{aligned}$	2.8	2	$\begin{aligned} & 2290.72 \\ & (14776) \end{aligned}$	$\begin{gathered} 80 \\ (5.5) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 240.0 \\ (108.8) \end{gathered}$	$\begin{aligned} & \hline 134.0 \\ & (60.0) \end{aligned}$	$\begin{gathered} \hline 44.0 \\ (20.0) \end{gathered}$		
52	(1300)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \\ & \hline \end{aligned}$	$\begin{gathered} 2.4 \\ (60) \\ \hline \end{gathered}$	$\begin{aligned} & 1.2 \\ & (30) \\ & \hline \end{aligned}$	$\begin{gathered} 1.1 \\ (28) \\ \hline \end{gathered}$	2.6	2	$\begin{aligned} & 2463.00 \\ & (15890) \end{aligned}$	$\begin{gathered} 80 \\ (5.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{array}{r} 256.0 \\ (116.1) \\ \hline \end{array}$	$\begin{aligned} & 136.0 \\ & (61.7) \end{aligned}$	$\begin{gathered} \hline 60.0 \\ (27.0) \\ \hline \end{gathered}$		
54	(1350)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \end{aligned}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	$\begin{aligned} & 1.2 \\ & (30) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & \text { (28) } \\ & \hline \end{aligned}$	2.6	2	$\begin{aligned} & 2715.47 \\ & (17519) \end{aligned}$	$\begin{gathered} 80 \\ (5.5) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{array}{r} 265.0 \\ (120.1) \\ \hline \end{array}$	$\begin{aligned} & 150.0 \\ & (68.0) \end{aligned}$	$\begin{gathered} \hline 63.0 \\ (28.6) \end{gathered}$		
56	(1400)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \end{aligned}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	$\begin{array}{r} 1.2 \\ (30) \\ \hline \end{array}$	$\begin{aligned} & \hline 1.1 \\ & \text { (28) } \\ & \hline \end{aligned}$	2.5	2	$\begin{aligned} & 2903.33 \\ & (18731) \end{aligned}$	$\begin{gathered} 80 \\ (5.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 288.0 \\ (130.6) \end{gathered}$	$\begin{aligned} & 165.0 \\ & (70.8) \end{aligned}$	$\begin{gathered} \hline 63.0 \\ (28.6) \end{gathered}$		
58	(1450)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & (305) \\ & (356) \end{aligned}$	$\begin{gathered} 2.4 \\ (60) \\ \hline \end{gathered}$	$\begin{array}{r} 1.2 \\ (30) \\ \hline \end{array}$	$\begin{gathered} 1.1 \\ (28) \\ \hline \end{gathered}$	2.4	2	$\begin{aligned} & 3097.48 \\ & (19984) \end{aligned}$	$\begin{gathered} 80 \\ (5.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 300.0 \\ & (136.1) \end{aligned}$	$\begin{array}{r} 190.0 \\ (86.2) \\ \hline \end{array}$	$\begin{aligned} & 66.2 \\ & (30.0) \end{aligned}$		
60	(1500)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \\ & \hline \end{aligned}$	$\begin{gathered} 2.4 \\ (60) \\ \hline \end{gathered}$	$\begin{array}{r} 1.2 \\ (30) \\ \hline \end{array}$	$\begin{gathered} 1.1 \\ (28) \\ \hline \end{gathered}$	2.3	2	$\begin{aligned} & 3297.92 \\ & (21277) \\ & \hline \end{aligned}$	$\begin{gathered} 80 \\ (5.5) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 310.0 \\ & (140.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 200.0 \\ & (90.7) \end{aligned}$	$\begin{aligned} & \hline 68.3 \\ & (31.2) \\ & \hline \end{aligned}$		
66	(1650)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \\ & \hline \end{aligned}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	$\begin{aligned} & 1.2 \\ & (30) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & \text { (28) } \\ & \hline \end{aligned}$	2.1	2	$\begin{aligned} & 3936.92 \\ & (25399) \\ & \hline \end{aligned}$	$\begin{gathered} 80 \\ (5.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 350.0 \\ & (158.7) \\ & \hline \end{aligned}$	$\begin{array}{r} 240.0 \\ (108.8) \\ \hline \end{array}$	$\begin{aligned} & \hline 71.0 \\ & (32.2) \end{aligned}$		
68	(1700)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \end{aligned}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	$\begin{aligned} & 1.2 \\ & (30) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & (28) \\ & \hline \end{aligned}$	2.0	2	$\begin{aligned} & \hline 4162.48 \\ & (26855) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 70 \\ (5.0) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 368.8 \\ & (166.9) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 227.0 \\ (103.0) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 76.3 \\ & (34.6) \end{aligned}$		
72	(1800)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \end{aligned}$	$\begin{gathered} 2.4 \\ (60) \\ \hline \end{gathered}$	$\begin{array}{r} 1.2 \\ (30) \\ \hline \end{array}$	$\begin{gathered} 1.1 \\ (28) \\ \hline \end{gathered}$	1.9	2	$\begin{aligned} & \hline 4632.47 \\ & (2987) \end{aligned}$	$\begin{gathered} 70 \\ (5.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 390.0 \\ & (176.9) \end{aligned}$	$\begin{aligned} & \hline 290.0 \\ & (131.5) \end{aligned}$	$\begin{gathered} \hline 87.0 \\ (39.4) \end{gathered}$		
78	(1950)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \end{aligned}$	$\begin{array}{r} 2.3 \\ (57) \\ \hline \end{array}$	$\begin{aligned} & 1.2 \\ & (30) \\ & \hline \end{aligned}$	$\begin{gathered} 1.1 \\ (28) \\ \hline \end{gathered}$	1.8	2	$\begin{array}{\|l} \hline 5410.60 \\ (34907) \\ \hline \end{array}$	$\begin{gathered} 85 \\ (6.0) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{array}{r} 410.0 \\ (186.0) \\ \hline \end{array}$	$\begin{array}{r} 315.0 \\ (142.9) \\ \hline \end{array}$	$\begin{aligned} & \hline 103.0 \\ & (46.7) \\ & \hline \end{aligned}$		
84	(2100)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.3 \\ & (57) \end{aligned}$	$\begin{aligned} & 1.2 \\ & (30) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & \text { (28) } \\ & \hline \end{aligned}$	1.6	2	$\begin{aligned} & 6221.13 \\ & (40136) \end{aligned}$	$\begin{gathered} \hline 85 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} \hline 440.0 \\ (200.0) \end{gathered}$	$\begin{array}{r} \hline 350.0 \\ (158.0) \\ \hline \end{array}$	$\begin{aligned} & \hline 113.0 \\ & (51.3) \\ & \hline \end{aligned}$		
90	(2250)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \end{aligned}$	$\begin{array}{r} 2.3 \\ (57) \\ \hline \end{array}$	$\begin{array}{r} 1.2 \\ (30) \\ \hline \end{array}$	$\begin{aligned} & \hline 1.1 \\ & (28) \\ & \hline \end{aligned}$	1.6	2	$\begin{aligned} & \hline 7088.11 \\ & (45730) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 85 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 448.0 \\ & (203.1) \end{aligned}$	$\begin{aligned} & \hline 363.0 \\ & (164.6) \end{aligned}$	$\begin{aligned} & 125.0 \\ & (56.7) \\ & \hline \end{aligned}$		
96	(2400)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \end{aligned}$	$\begin{array}{r} 2.3 \\ (57) \\ \hline \end{array}$	$\begin{array}{r} 1.2 \\ (30) \\ \hline \end{array}$	$\begin{gathered} 1.1 \\ (28) \\ \hline \end{gathered}$	1.4	2	$\begin{aligned} & 8011.85 \\ & (51689) \\ & \hline \end{aligned}$	$\begin{gathered} 85 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{array}{r} 466.0 \\ (211.3) \\ \hline \end{array}$	$\begin{aligned} & 367.0 \\ & (170.5) \end{aligned}$	$\begin{aligned} & 125.0 \\ & (56.7) \end{aligned}$		
102	(2550)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \\ & \hline \end{aligned}$	$\begin{array}{r} 2.3 \\ (57) \\ \hline \end{array}$	$\begin{array}{r} 1.2 \\ (30) \\ \hline \end{array}$	$\begin{aligned} & \hline 1.1 \\ & \text { (28) } \\ & \hline \end{aligned}$	1.3	2	$\begin{aligned} & 8992.02 \\ & (58013) \\ & \hline \end{aligned}$	$\begin{gathered} 85 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 485.8 \\ & (220.0) \end{aligned}$	$\begin{array}{r} 395.0 \\ (179.1) \\ \hline \end{array}$	$\begin{aligned} & 137.0 \\ & (62.1) \end{aligned}$		
108	(2700)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & (305) \\ & (356) \end{aligned}$	$\begin{array}{r} 2.3 \\ (57) \\ \hline \end{array}$	$\begin{aligned} & 1.2 \\ & (30) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & \text { (28) } \\ & \hline \end{aligned}$	1.2	2	$\begin{array}{\|c} \hline 10028.75 \\ (64702) \end{array}$	$\begin{gathered} 85 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 510.0 \\ & (231.3) \\ & \hline \end{aligned}$	$\begin{array}{r} 425.0 \\ (192.7) \\ \hline \end{array}$	$\begin{aligned} & 139.0 \\ & (63.0) \end{aligned}$		
120	(3000)	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline(305) \\ & (356) \end{aligned}$	$\begin{array}{r} 2.3 \\ (57) \\ \hline \end{array}$	$\begin{aligned} & \hline 1.2 \\ & (30) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & \text { (28) } \\ & \hline \end{aligned}$	1.1	2	$\begin{gathered} 12271.84 \\ (79173) \end{gathered}$	$\begin{gathered} \hline 85 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 540.0 \\ & (244.9) \end{aligned}$	$\begin{aligned} & \hline 565.0 \\ & (256.2) \end{aligned}$	$\begin{aligned} & 151.0 \\ & (65.8) \end{aligned}$		

[^0]
NOTES:

1. Concurrent Movements - Concurrent movements are developed when two or more movements in a pipe system occur at the same time. If mulifiple movements exceed single arch design there moy be a need for oddifional a rches.
To perform calculation for concurrent movement when a pipe system design has more than one movement, please use the following formula:

$$
\frac{\text { Actual Axial Compression }}{\text { Rated Axial Compression }}+\frac{\text { Actuol Axial Extension }}{\text { Rated Axial Extension }+\frac{\text { Actual Lateral }(X)}{\text { Rated lateral }(X)}+\frac{\text { Actuol Lateral }(Y)}{\text { Rated lateral }(Y)}=/<1}
$$

Colculation must be equal to or less than 1 for exponsion joint to operatie within concurrent movement copability.
2. Filled Arch Rubber Expansion Joints - Known os Style FA 231. The Series FA230 rubber expansion joints should be selected when there are 20\% or more solids being conveved in the pipe system. The filled arch products are manufactured with seamless twbe filled with a lower durometer rubber in the arch core. The filled arch product will have a 50% reduced movement capobility from the information provided in Table 2.
3. Pressure rating is based on 170° F operating temperature with a $4: 1$ sufety factor. At higher temperatures, the pressure rating is reduced slightly. Hydrostatic testing ot 1.5 times rated maximum cataloguve pressure or design working pressure of pipe system for 10 minutes is available upon request.
4. Weights are approximate and vary due to lengith.
5. The degree of angular movement is based on the moximum rated extension.
6. Torsional movement is expressed when the exponsion joint is ot neutral length.
7. Calculation of Thrust (Thrust Factor). When exponsion joints are installed in the pipeline, the static portion of the thrust is calculated as a producc of the area of the I.D. of the arch of the expansion joint times the maximum
$\left[\begin{array}{ll}\text { "Effective Area" } & \\ \text { Factor= } & \begin{array}{l}\text { T= Thrust } \\ \text { P PSS (Design, Test or Surge) } \\ \text { D= Arch I.D. }\end{array}\end{array}\right]$ pressure (design, test or surge) that will occur in the line. The result is a force expressed in pounds.
Toke Design, surge or test pressure X thrust factor to colculate end thrust.
8. Parts listed at $26^{\prime \prime} \mathrm{Hg} / 660 \mathrm{~mm}$ Hg vacuum have a design rating of $3 \mathrm{O}^{\prime \prime} \mathrm{Hg} / 762 \mathrm{~mm} \mathrm{Hg}$ (ffull vaccum). Vaccuum rating is based on neutral installed length, without external lood. Products should noo be installed "extended" on vocuum applications.
9. Limit rod unit weight consists of one rod with washers, nuts and two limit rod plates. Multiply number of limit rods needed for the application (as specified in the Fluid Sealing Association's Technical Handbook, Seventh Edifion or table 4 in this manual) to determine correct weights.
10. Shorter neutral lengths svailable in strle 221 for sizes $10^{\prime \prime}, 12^{\prime \prime}, 24^{\prime \prime} \& 30^{\prime \prime}$.

Style 2eP Performance Data

Table 3: Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom. I.D. Inch / (mm)		Neutral Length Inch / (mm)		232 Movement Capability: ${ }^{1,2}$ From Neutral Position (Non-Concurrent)					Operating Conditions ${ }^{3}$			Weights lbs / (kgs) ${ }^{4}$				
								플 0 0 0 0 0 0 0 0		흥 흔 흘 흔		$\begin{aligned} & \text { 흥 } \\ & \bar{ㅇ} \\ & \text { 을 } \\ & \text { 흥 } \end{aligned}$				
1.5	(40)			10	(254)	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.9 \\ & (24) \end{aligned}$	58.0	2	$\begin{gathered} 7.44 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ (14.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{array}{r} 3.0 \\ (1.4) \\ \hline \end{array}$	$\begin{gathered} 2.5 \\ (1.1) \end{gathered}$	$\begin{gathered} 2.3 \\ (1.0) \end{gathered}$
2	(50)	10	(254)	$\begin{aligned} & 2.8 \\ & (70) \\ & \hline \end{aligned}$	$\begin{gathered} 1.4 \\ (35) \end{gathered}$	$\begin{aligned} & 1.2 \\ & (32) \end{aligned}$	58.0	2	$\begin{gathered} 12.40 \\ (80) \end{gathered}$	$\begin{gathered} 200 \\ (14.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} \hline 4.0 \\ (1.8) \\ \hline \end{gathered}$	$\begin{gathered} 4.0 \\ (1.8) \end{gathered}$	$\begin{gathered} \hline 2.8 \\ (1.3) \end{gathered}$		
2.5	(65)	10	(254)	$\begin{gathered} 2.8 \\ (70) \end{gathered}$	$\begin{gathered} 1.4 \\ (35) \\ \hline \end{gathered}$	$\begin{aligned} & 1.2 \\ & (32) \end{aligned}$	47.4	2	$\begin{aligned} & 15.66 \\ & (101) \end{aligned}$	$\begin{gathered} 200 \\ (14.0) \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{array}{r} \hline 4.5 \\ (2.0) \\ \hline \end{array}$	$\begin{gathered} \hline 4.5 \\ (2.0) \\ \hline \end{gathered}$	$\begin{gathered} 2.8 \\ (1.3) \end{gathered}$		
3	(80)	10	(254)	$\begin{gathered} 2.8 \\ (70) \\ \hline \end{gathered}$	$\begin{gathered} 1.4 \\ (35) \\ \hline \end{gathered}$	$\begin{aligned} & 1.2 \\ & \text { (32) } \end{aligned}$	42.2	2	$\begin{aligned} & 19.36 \\ & (125) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 200 \\ (14.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.0 \\ (2.7) \\ \hline \end{gathered}$	$\begin{gathered} 5.5 \\ (4.3) \\ \hline \end{gathered}$	$\begin{gathered} 2.8 \\ (1.3) \end{gathered}$		
4	(100)	10	(254)	$\begin{gathered} 2.8 \\ (70) \end{gathered}$	$\begin{gathered} 1.4 \\ (35) \\ \hline \end{gathered}$	$\begin{aligned} & 1.2 \\ & (32) \end{aligned}$	34.2	2	$\begin{aligned} & 27.90 \\ & (180) \end{aligned}$	$\begin{gathered} 200 \\ (14.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 8.5 \\ (3.9) \end{gathered}$	$\begin{aligned} & \hline 8.0 \\ & (3.6) \\ & \hline \end{aligned}$	$\begin{gathered} 2.8 \\ (1.3) \end{gathered}$		
5	(125)	10	(254)	$\begin{aligned} & 3.2 \\ & (80) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.4 \\ & (36) \end{aligned}$	28.6	2	$\begin{aligned} & 38.13 \\ & (246) \\ & \hline \end{aligned}$	$\begin{gathered} 190 \\ (13.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 9.5 \\ (4.3) \end{gathered}$	$\begin{gathered} 8.5 \\ (3.9) \end{gathered}$	$\begin{gathered} 4.0 \\ (1.8) \end{gathered}$		
6	(150)	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline(254) \\ & (305) \end{aligned}$	$\begin{aligned} & 3.2 \\ & (80) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.4 \\ & (36) \end{aligned}$	24.4	2	$\begin{aligned} & 49.91 \\ & (322) \end{aligned}$	$\begin{gathered} 190 \\ (13.0) \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{aligned} & 11.5 \\ & (5.2) \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ (4.3) \end{gathered}$	$\begin{gathered} \hline 4.0 \\ (1.8) \\ \hline \end{gathered}$		
8	(200)	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline(254) \\ & (305) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.2 \\ & (80) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.4 \\ & (36) \end{aligned}$	18.8	2	$\begin{aligned} & \hline 77.97 \\ & (503) \\ & \hline \end{aligned}$	$\begin{gathered} 190 \\ (13.0) \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 16.0 \\ & (7.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 14.5 \\ & (6.6) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8.0 \\ (3.6) \\ \hline \end{gathered}$		
10	(250)	14	(356)	$\begin{gathered} 3.2 \\ (80) \\ \hline \end{gathered}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & \hline 1.4 \\ & (36) \\ & \hline \end{aligned}$	17.8	2	$\begin{gathered} 119.97 \\ (774) \\ \hline \end{gathered}$	$\begin{gathered} \hline 190 \\ (13.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 29.0 \\ (13.2) \\ \hline \end{array}$	$\begin{aligned} & \hline 17.0 \\ & (7.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & (4.5) \\ & \hline \end{aligned}$		
12	(300)	14	(356)	$\begin{aligned} & 3.2 \\ & (80) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \\ & \hline \end{aligned}$	14.9	2	161.98 (1045)	$\begin{gathered} 190 \\ (13.0) \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 36.0 \\ (16.3) \end{gathered}$	$\begin{array}{r} 24.5 \\ (11.0) \end{array}$	$\begin{aligned} & 10.0 \\ & (4.5) \end{aligned}$		
14	(350)	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline(356) \\ & (406) \end{aligned}$	$\begin{aligned} & 3.2 \\ & (80) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	12.9	2	$\begin{aligned} & 210.18 \\ & (1356) \end{aligned}$	$\begin{aligned} & 130 \\ & (9.0) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 44.0 \\ (20.0) \end{gathered}$	$\begin{gathered} 27.0 \\ (12.3) \\ \hline \end{gathered}$	$\begin{aligned} & 12.0 \\ & (5.4) \\ & \hline \end{aligned}$		
16	(400)	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline(356) \\ & (406) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.2 \\ & (80) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \\ & \hline \end{aligned}$	11.3	2	$\begin{aligned} & 264.74 \\ & (1708) \end{aligned}$	$\begin{aligned} & \hline 115 \\ & (8.0) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} \hline 53.0 \\ (24.0) \end{gathered}$	$\begin{array}{r} 33.5 \\ (15.2) \\ \hline \end{array}$	$\begin{aligned} & 15.0 \\ & (6.8) \\ & \hline \end{aligned}$		
18	(450)	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline(356) \\ & (406) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.2 \\ & (80) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	10.1	2	$\begin{aligned} & 325.50 \\ & (2100) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 115 \\ & (8.0) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 61.0 \\ (27.7) \\ \hline \end{gathered}$	$\begin{array}{r} 34.0 \\ (15.5) \\ \hline \end{array}$	$\begin{aligned} & 16.0 \\ & (7.2) \\ & \hline \end{aligned}$		
20	(500)	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline(356) \\ & (406) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.2 \\ & (80) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (40) \end{aligned}$	9.1	2	$\begin{gathered} 392.62 \\ (2533) \end{gathered}$	$\begin{aligned} & \hline 115 \\ & (8.0) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} \hline 7.0 \\ (33.1) \\ \hline \end{gathered}$	$\begin{array}{r} 38.0 \\ (17.2) \\ \hline \end{array}$	$\begin{aligned} & \hline 16.0 \\ & (7.2) \\ & \hline \end{aligned}$		
24	(600)	16	(406)	$\begin{gathered} 4.0 \\ (100) \end{gathered}$	$\begin{aligned} & 2.0 \\ & (50) \end{aligned}$	$\begin{aligned} & 1.8 \\ & (46) \end{aligned}$	9.5	2	$\begin{aligned} & 562.03 \\ & (3626) \end{aligned}$	$\begin{aligned} & 100 \\ & (7.0) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} \hline 88.0 \\ (40.0) \end{gathered}$	$\begin{gathered} 48.0 \\ (21.8) \end{gathered}$	$\begin{aligned} & 20.0 \\ & (9.1) \end{aligned}$		
30	(750)	16	(406)	$\begin{gathered} \hline 4.0 \\ (102) \\ \hline \end{gathered}$	$\begin{gathered} 2.0 \\ (50) \end{gathered}$	$\begin{aligned} & 1.8 \\ & (46) \end{aligned}$	7.6	2	$\begin{aligned} & 842.27 \\ & (5434) \end{aligned}$	$\begin{gathered} \hline 90 \\ (6.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{aligned} & 127.0 \\ & (57.6) \end{aligned}$	$\begin{gathered} 63.0 \\ (28.6) \end{gathered}$	$\begin{array}{r} 29.5 \\ (13.3) \\ \hline \end{array}$		
34	(850)	16	(406)	$\begin{gathered} \hline 4.0 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & (50) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & (46) \end{aligned}$	6.7	2	1060.51 (6842)	$\begin{gathered} \hline 90 \\ (6.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 134.8 \\ & (60.8) \end{aligned}$	$\begin{gathered} \hline 72.0 \\ (32.7) \\ \hline \end{gathered}$	$\begin{gathered} 43.0 \\ (19.5) \end{gathered}$		
36	(900)	16	(406)	$\begin{gathered} \hline 4.0 \\ (102) \\ \hline \end{gathered}$	$\begin{gathered} 2.0 \\ (50) \end{gathered}$	$\begin{aligned} & 1.8 \\ & (46) \end{aligned}$	6.3	2	$\begin{gathered} 1179.09 \\ (7607) \\ \hline \end{gathered}$	$\begin{gathered} \hline 90 \\ (6.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 156.0 \\ & (70.8) \end{aligned}$	$\begin{aligned} & \hline 76.0 \\ & (34.5) \\ & \hline \end{aligned}$	$\begin{gathered} 45.0 \\ (20.4) \\ \hline \end{gathered}$		
42	(1050)	16	(406)	$\begin{gathered} \hline 4.8 \\ (120) \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	$\begin{gathered} 2.2 \\ (56) \end{gathered}$	6.5	2	$\begin{aligned} & 1628.28 \\ & (10505) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 80 \\ (5.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 211.0 \\ & (95.7) \end{aligned}$	$\begin{aligned} & 100.0 \\ & (45.4) \end{aligned}$	$\begin{aligned} & \hline 47.0 \\ & (21.3) \\ & \hline \end{aligned}$		
48	(1200)	16	(406)	$\begin{gathered} \hline 4.8 \\ (120) \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	$\begin{gathered} 2.2 \\ (56) \end{gathered}$	5.7	2	$\begin{gathered} \hline 2085.53 \\ (13455) \end{gathered}$	$\begin{gathered} \hline 80 \\ (5.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 222.8 \\ (101.0) \end{gathered}$	$\begin{aligned} & 132.0 \\ & (59.9) \\ & \hline \end{aligned}$	$\begin{gathered} 49.0 \\ (22.2) \end{gathered}$		

Neutral lengths in RED are the recommended minimum lengths.
Metric Conversion Formula: Nominal I.D. : in. x $25=$ mm; Neutral length: in. x $25.4=$ mm

Table 3：Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom．I．D． Inch／（mm）		Neutral Length Inch／（mm）		232 Movement Capability：${ }^{1,2}$ From Neutral Position（Non－Concurrent）					Operating Conditions ${ }^{3}$			Weights lbs／（kgs）${ }^{4}$				
											－	흥 音 言 高				
54	（1350）			16	（406）	$\begin{gathered} 4.8 \\ (120) \end{gathered}$	$\begin{array}{r} 2.4 \\ (60) \\ \hline \end{array}$	$\begin{aligned} & 2.2 \\ & (56) \end{aligned}$	5.0	2	$\begin{aligned} & 2599.53 \\ & (16770) \\ & \hline \end{aligned}$	$\begin{gathered} 80 \\ \hline(5.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 281.5 \\ & (127.7) \end{aligned}$	$\begin{aligned} & 150.0 \\ & (162.7) \end{aligned}$	$\begin{aligned} & \hline 67.0 \\ & (30.4) \end{aligned}$
60	（1500）	18	（450）	$\begin{gathered} \hline 4.8 \\ (120) \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \\ \hline \end{gathered}$	$\begin{aligned} & 2.2 \\ & (56) \\ & \hline \end{aligned}$	4.5	2	$\begin{aligned} & 3208.97 \\ & (20703) \end{aligned}$	$\begin{gathered} 80 \\ \hline(5.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 358.7 \\ & (162.7) \end{aligned}$	$\begin{aligned} & \hline 200.0 \\ & (90.7) \end{aligned}$	$\begin{aligned} & \hline 72.0 \\ & (32.7) \\ & \hline \end{aligned}$		
66	（1650）	18	（450）	$\begin{gathered} 4.8 \\ (120) \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \\ \hline \end{gathered}$	$\begin{aligned} & 2.2 \\ & (56) \\ & \hline \end{aligned}$	4.1	2	$\begin{aligned} & 3839.51 \\ & (24771) \end{aligned}$	$\begin{gathered} \hline 80 \\ (5.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{array}{r} 419.0 \\ (190.1) \\ \hline \end{array}$	$\begin{aligned} & \hline 240.0 \\ & (108.8) \end{aligned}$	$\begin{aligned} & \hline 75.0 \\ & (34.0) \\ & \hline \end{aligned}$		
72	（1800）	18	（450）	$\begin{gathered} \hline 4.8 \\ (120) \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \\ \hline \end{gathered}$	$\begin{array}{r} 2.2 \\ (56) \\ \hline \end{array}$	3.8	2	$\begin{aligned} & 4526.62 \\ & (29244) \\ & \hline \end{aligned}$	$\begin{gathered} 70 \\ \hline(5.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 478.8 \\ & (217.2) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 290.0 \\ & (131.5) \end{aligned}$	$\begin{gathered} \hline 94.0 \\ (42.6) \end{gathered}$		
78	（1950）	18	（450）	$\begin{gathered} \hline 4.5 \\ \text { (112) } \\ \hline \end{gathered}$	$\begin{array}{r} 2.5 \\ (64) \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & \text { (51) } \end{aligned}$	5.2	2	$\begin{aligned} & 5410.60 \\ & (34907) \\ & \hline \end{aligned}$	$\begin{gathered} 85 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 754.0 \\ & (342.0) \end{aligned}$	$\begin{array}{r} 315.0 \\ (142.9) \\ \hline \end{array}$	$\begin{aligned} & 111.0 \\ & (50.3) \end{aligned}$		
84	（2100）	18	（450）	$\begin{gathered} \hline 4.5 \\ (112) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 2.5 \\ (64) \\ \hline \end{array}$	$\begin{array}{r} 2.0 \\ (51) \\ \hline \end{array}$	4.6	2	$\begin{aligned} & 6221.13 \\ & (40136) \\ & \hline \end{aligned}$	$\begin{gathered} 85 \\ (6.0) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 819.0 \\ & (371.5) \\ & \hline \end{aligned}$	$\begin{array}{r} 350.0 \\ (158.0) \\ \hline \end{array}$	$\begin{aligned} & 121.0 \\ & (54.9) \\ & \hline \end{aligned}$		
96	（2400）	18	（450）	$\begin{gathered} \hline 4.5 \\ (112) \\ \hline \end{gathered}$	$\begin{array}{r} 2.5 \\ (64) \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & (51) \\ & \hline \end{aligned}$	4.0	2	$\begin{aligned} & \hline 8011.85 \\ & (51689) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 85 \\ (6.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 1300.0 \\ & (589.7) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 367.0 \\ (170.5) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 134.0 \\ & (60.8) \\ & \hline \end{aligned}$		
108	（2700）	18	（450）	$\begin{gathered} \hline 4.5 \\ \text { (112) } \\ \hline \end{gathered}$	$\begin{array}{r} 2.5 \\ (64) \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & (51) \end{aligned}$	3.4	2	$\begin{gathered} 10029.75 \\ (64702) \end{gathered}$	$\begin{gathered} 85 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 1462.0 \\ & (663.2) \end{aligned}$	$\begin{aligned} & 425.0 \\ & (192.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 153.0 \\ & (69.4) \\ & \hline \end{aligned}$		
120	（3000）	18	（450）	$\begin{gathered} \hline 4.5 \\ (112) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2.5 \\ & (64) \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & (51) \end{aligned}$	3.0	2	$\begin{gathered} 12271.84 \\ (79173) \end{gathered}$	$\begin{gathered} \hline 85 \\ (6.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1820.0 \\ & (825.5) \end{aligned}$	$\begin{aligned} & \hline 565.0 \\ & (256.2) \end{aligned}$	$\begin{aligned} & 167.0 \\ & (75.7) \end{aligned}$		

NOTES：
1．Concurrent Movements－Concurrent movements are developed when two or more movements in a pipe system occur ot the same fime． If mulifiple movements exceed single arch design there moy be a need for addifional arches．
To perform calculation for concurrent movement when a pipe system design has more than one movement，please use the following formula：

Rated Axial Compression + Rated Axial Extension + Rated Lateral $(X)+$ Rated Lateral（ Y ）
Colculation must be equal to or esss than 1 for exponsion joint to operate within concurrent movement cupability．
2．Filled Arch Rubber Expansion Joints－Known as Style FA 232．The Series FA230 rubber expansion joints should be selected when there are 20% or more solids being convereed in the pipe system．The filled arch products are manufactured with seamless tobe filled with a lower durometer rubber in the arch core．The filled arch product will have a 50% reduced movement copobbility from the information provided in Table 3.
3．Pressure rating is based on 170° F operating temperature with a $4: 1$ safefy factor．At higher temperatures，the pressure rating is reduced slightily． Hydrostatic tessing at 1.5 times rated maximum catalogue pressure or design working pressure of pipe system for 10 minutes is ovailable upon request．
4．Weights are approximate and vary due to length．
5．The degree of angular movement is based on the maximum rated extension．
6．Torsional movement is expressed when the expansion joint is at neutral length．
7．Calculation of Thrust（Thrust Factor）．When expansion joints are installed in the pipeline，the static portion of
$\left[\begin{array}{ll}\text {＂Effective Area＂} & \\ \text { Thrust Factor＝} & \\ \mathrm{T}=\frac{\pi}{4} \text {（D）}{ }^{2}, ~(P) & \begin{array}{l}\text { T＝Thrust } \\ \text { P PSI（Design，Test or Surge）} \\ \text { D＝Arch I．D．}\end{array} \\ & \left.\begin{array}{l}\text {（ }\end{array}\right]\end{array}\right.$ the thrust is calculated as a producc of the area of the I．D．of the arch of the expansion joint times the maximum pressure（design，test or surge）that will occur in the line．The result is a force expressed in pounds．
Take Design，surge or test pressure X thrust factor to calculate end thrust．
8．Parts listed ot $26^{" \mathrm{Hg}} / 660 \mathrm{~mm}$ Hg voccumm hove a design rating of $30^{\prime \prime} \mathrm{Hg} / 762 \mathrm{~mm} \mathrm{Hg}$（foll vacuum）．Vacuum rating is based on neutrol instilled length， without external lood．Products should not be installed＂extended＂on vocuum applications．
9．Limit rod unit weight consists of one rod with washers，nuts and two limit rod plates．Multiply number of limit rods needed for the application（as specified in the Fluid Sealing Association＇s Technical Handbook，Seventh Edifion or table 4 in this manval）to determine correct weights．

Style 233 Performance Data

Table 4: Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom. I.D. Inch / (mm)		Neutral Length Inch / (mm)		233 Movement Capability: ${ }^{1,2}$ From Neutral Position (Non-Concurrent)					Operating Conditions ${ }^{3}$			$\begin{gathered} \text { Weights } \\ \text { lbs / (kgs) }{ }^{4} \end{gathered}$				
								틍 0 0 0 0 0 0 0 0		흥 흔 흘 흔						
1.5	(40)			14	(356)	$\begin{array}{r} 2.4 \\ (60) \\ \hline \end{array}$	$\begin{gathered} 1.2 \\ (30) \end{gathered}$	$\begin{aligned} & 1.4 \\ & (36) \end{aligned}$	67.4	2	$\begin{aligned} & \hline 7.44 \\ & (48) \end{aligned}$	$\begin{gathered} 200 \\ (14.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.0 \\ (1.8) \\ \hline \end{gathered}$	$\begin{gathered} 2.5 \\ (1.1) \end{gathered}$	$\begin{gathered} 6.0 \\ (2.7) \end{gathered}$
2	(50)	14	(356)	$\begin{gathered} \hline 4.1 \\ (105) \\ \hline \end{gathered}$	$\begin{gathered} 2.0 \\ (52) \\ \hline \end{gathered}$	$\begin{aligned} & 1.9 \\ & (48) \end{aligned}$	63.9	2	$\begin{gathered} 12.40 \\ (80) \\ \hline \end{gathered}$	$\begin{gathered} \hline 200 \\ (14.0) \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 5.5 \\ (2.5) \end{gathered}$	$\begin{gathered} 4.0 \\ (1.8) \end{gathered}$	$\begin{gathered} 7.0 \\ (3.2) \\ \hline \end{gathered}$		
2.5	(65)	14	(356)	$\begin{gathered} \hline 4.1 \\ (105) \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & (52) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.9 \\ & (48) \end{aligned}$	58.5	2	$\begin{aligned} & 15.66 \\ & (101) \end{aligned}$	$\begin{gathered} 200 \\ (14.0) \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 6.0 \\ (2.7) \end{gathered}$	$\begin{gathered} \hline 4.5 \\ (2.0) \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ (3.2) \end{gathered}$		
3	(80)	14	(356)	$\begin{gathered} \hline 4.1 \\ (105) \\ \hline \end{gathered}$	$\begin{gathered} 2.0 \\ (52) \end{gathered}$	$\begin{aligned} & 1.9 \\ & (48) \\ & \hline \end{aligned}$	53.4	2	$\begin{aligned} & 19.38 \\ & (125) \end{aligned}$	$\begin{gathered} \hline 200 \\ (14.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.0 \\ (3.2) \\ \hline \end{gathered}$	$\begin{gathered} 5.5 \\ (4.3) \end{gathered}$	$\begin{gathered} 7.3 \\ (3.4) \end{gathered}$		
4	(100)	14	(356)	$\begin{gathered} \hline 4.1 \\ (105) \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & (52) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.9 \\ & (48) \end{aligned}$	45.6	2	$\begin{aligned} & 27.90 \\ & (180) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 200 \\ (14.0) \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.1) \end{gathered}$	$\begin{gathered} \hline 8.0 \\ (3.6) \\ \hline \end{gathered}$	$\begin{gathered} 8.0 \\ (3.6) \\ \hline \end{gathered}$		
5	(125)	14	(356)	$\begin{gathered} \hline 4.7 \\ (120) \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	$\begin{aligned} & 2.1 \\ & (54) \end{aligned}$	39.2	2	$\begin{aligned} & \hline 38.13 \\ & (246) \end{aligned}$	$\begin{gathered} 190 \\ (13.0) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 11.0 \\ & (5.0) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8.5 \\ (3.9) \end{gathered}$	$\begin{gathered} \hline 8.0 \\ (3.6) \end{gathered}$		
6	(150)	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & (356) \\ & (406) \end{aligned}$	$\begin{gathered} \hline 4.7 \\ (120) \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	$\begin{gathered} 2.1 \\ (54) \end{gathered}$	34.2	2	$\begin{aligned} & 49.91 \\ & (322) \end{aligned}$	$\begin{gathered} 190 \\ (13.0) \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{aligned} & 13.5 \\ & (6.1) \end{aligned}$	$\begin{gathered} \hline 9.5 \\ (4.3) \end{gathered}$	$\begin{aligned} & 12.0 \\ & (5.4) \end{aligned}$		
8	(200)	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline(356) \\ & (406) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4.7 \\ (120) \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	$\begin{aligned} & 2.1 \\ & (54) \\ & \hline \end{aligned}$	27.0	2	$\begin{aligned} & 77.97 \\ & (503) \\ & \hline \end{aligned}$	$\begin{gathered} 190 \\ (13.0) \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 18.0 \\ & (8.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 14.5 \\ & (6.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 12.0 \\ & (5.4) \\ & \hline \end{aligned}$		
10	(250)	18	(457)	$\begin{gathered} \hline 4.7 \\ (120) \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \\ \hline \end{gathered}$	$\begin{aligned} & 2.1 \\ & (54) \end{aligned}$	25.6	2	$\begin{gathered} 119.97 \\ (774) \\ \hline \end{gathered}$	$\begin{gathered} \hline 190 \\ (13.0) \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 31.0 \\ (14.1) \end{gathered}$	$\begin{aligned} & \hline 17.0 \\ & (7.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 16.0 \\ & (7.2) \\ & \hline \end{aligned}$		
12	(300)	18	(457)	$\begin{gathered} \hline 4.7 \\ (120) \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	25.6	2	$\begin{aligned} & 161.98 \\ & (1045) \\ & \hline \end{aligned}$	$\begin{gathered} 190 \\ (13.0) \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} \hline 40.0 \\ (18.1) \end{gathered}$	$\begin{array}{r} 24.5 \\ (11.0) \\ \hline \end{array}$	$\begin{aligned} & 16.0 \\ & (7.2) \\ & \hline \end{aligned}$		
14	(350)	$\begin{aligned} & 18 \\ & 20 \end{aligned}$	$\begin{aligned} & (457) \\ & (508) \end{aligned}$	$\begin{gathered} \hline 4.7 \\ (120) \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	18.9	2	$\begin{aligned} & 210.18 \\ & (1356) \end{aligned}$	$\begin{aligned} & 130 \\ & (9.0) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 48.5 \\ (22.0) \end{gathered}$	$\begin{gathered} 27.0 \\ (12.3) \end{gathered}$	$\begin{aligned} & 16.0 \\ & (7.2) \end{aligned}$		
16	(400)	$\begin{aligned} & 18 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline(457) \\ & (508) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4.7 \\ (120) \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	16.7	2	$\begin{aligned} & 264.74 \\ & (1708) \\ & \hline \end{aligned}$	$\begin{array}{r} 115 \\ (8.0) \\ \hline \end{array}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 55.0 \\ (24.0) \end{gathered}$	$\begin{array}{r} 33.5 \\ \text { (15.2) } \\ \hline \end{array}$	$\begin{aligned} & \hline 20.0 \\ & (9.1) \\ & \hline \end{aligned}$		
18	(450)	$\begin{aligned} & 18 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline(457) \\ & (508) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4.7 \\ (120) \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	14.9	2	$\begin{aligned} & 325.50 \\ & (2100) \\ & \hline \end{aligned}$	$\begin{array}{r} 115 \\ (8.0) \\ \hline \end{array}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 66.0 \\ (27.7) \end{gathered}$	$\begin{gathered} 34.0 \\ \text { (15.5) } \end{gathered}$	$\begin{aligned} & 21.0 \\ & (9.5) \\ & \hline \end{aligned}$		
20	(500)	$\begin{aligned} & 18 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline(457) \\ & (508) \end{aligned}$	$\begin{gathered} \hline 4.7 \\ (120) \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	$\begin{gathered} 2.4 \\ (60) \end{gathered}$	13.5	2	$\begin{gathered} 392.62 \\ (2533) \end{gathered}$	$\begin{aligned} & 115 \\ & (8.0) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 78.0 \\ (35.4) \end{gathered}$	$\begin{gathered} 38.0 \\ (17.2) \end{gathered}$	$\begin{aligned} & 21.0 \\ & (9.5) \\ & \hline \end{aligned}$		
24	(600)	20	(508)	$\begin{gathered} \hline 6.0 \\ (150) \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & (75) \\ & \hline \end{aligned}$	$\begin{gathered} 2.7 \\ \text { (69) } \end{gathered}$	14.0	2	$\begin{aligned} & 562.03 \\ & (3626) \end{aligned}$	$\begin{aligned} & 100 \\ & (7.0) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} \hline 91.5 \\ (41.5) \end{gathered}$	$\begin{gathered} \hline 48.0 \\ (21.8) \\ \hline \end{gathered}$	$\begin{gathered} 32.0 \\ (14.5) \\ \hline \end{gathered}$		
30	(750)	20	(508)	$\begin{gathered} 6.0 \\ (150) \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & (75) \\ & \hline \end{aligned}$	$\begin{gathered} 2.7 \\ (69) \end{gathered}$	11.3	2	$\begin{aligned} & 842.27 \\ & (5434) \end{aligned}$	$\begin{gathered} 90 \\ (6.0) \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{aligned} & 131.0 \\ & (59.4) \end{aligned}$	$\begin{gathered} 63.0 \\ (28.6) \\ \hline \end{gathered}$	$\begin{gathered} 32.0 \\ (14.5) \end{gathered}$		
36	(900)	20	(508)	$\begin{gathered} \hline 6.0 \\ (150) \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & (75) \\ & \hline \end{aligned}$	$\begin{gathered} 2.7 \\ \text { (69) } \\ \hline \end{gathered}$	9.5	2	$\begin{gathered} 1179.09 \\ (7607) \\ \hline \end{gathered}$	$\begin{gathered} \hline 90 \\ (6.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 157.0 \\ & (71.2) \end{aligned}$	$\begin{gathered} \hline 76.0 \\ (34.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 43.0 \\ (19.5) \\ \hline \end{gathered}$		
42	(1050)	22	(559)	$\begin{gathered} \hline 7.2 \\ (180) \\ \hline \end{gathered}$	$\begin{aligned} & 3.6 \\ & (90) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (84) \end{aligned}$	6.5	2	$\begin{aligned} & 1628.28 \\ & (10505) \\ & \hline \end{aligned}$	$\begin{gathered} 80 \\ (5.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 242.0 \\ (109.8) \end{gathered}$	$\begin{aligned} & 100.0 \\ & (45.4) \end{aligned}$	$\begin{gathered} \hline 50.0 \\ (22.7) \\ \hline \end{gathered}$		
48	(1200)	22	(559)	$\begin{gathered} \hline 7.2 \\ (180) \\ \hline \end{gathered}$	$\begin{gathered} 3.6 \\ (90) \end{gathered}$	$\begin{aligned} & 3.3 \\ & (84) \\ & \hline \end{aligned}$	5.7	2	$\begin{array}{r} 2085.53 \\ (13455) \end{array}$	$\begin{gathered} \hline 80 \\ (5.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 257.0 \\ (116.6) \end{gathered}$	$\begin{aligned} & 132.0 \\ & (59.9) \end{aligned}$	$\begin{gathered} 52.0 \\ (23.6) \end{gathered}$		

[^1]Table 4: Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom. I.D. Inch / (mm)		Neutral Length Inch / (mm)		233 Movement Capability: ${ }^{1,2}$ From Neutral Position (Non-Concurrent)					Operating Conditions ${ }^{3}$			Weights lbs / (kgs) ${ }^{4}$				
										흥 흔 흔 흔	을	흥 을 응 彦				
54	(1350)			22	(559)	$\begin{gathered} 7.2 \\ (180) \\ \hline \end{gathered}$	$\begin{aligned} & 3.6 \\ & (90) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & (84) \\ & \hline \end{aligned}$	5.0	2	$\begin{gathered} 2599.53 \\ (16770) \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ (5.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 325.0 \\ (147.4) \end{gathered}$	$\begin{aligned} & 150.0 \\ & (162.7) \end{aligned}$	$\begin{aligned} & 70.0 \\ & (31.8) \end{aligned}$
60	(1500)	24	(610)	$\begin{gathered} \hline 7.2 \\ (180) \end{gathered}$	$\begin{aligned} & 3.6 \\ & (90) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (84) \\ & \hline \end{aligned}$	4.5	2	$\begin{gathered} 3208.97 \\ (20703) \end{gathered}$	$\begin{gathered} 80 \\ (5.5) \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 413.0 \\ (187.3) \end{gathered}$	$\begin{aligned} & 200.0 \\ & (90.7) \end{aligned}$	$\begin{aligned} & \hline 76.0 \\ & (34.5) \end{aligned}$		
66	(1650)	24	(610)	$\begin{gathered} \hline 7.2 \\ (180) \\ \hline \end{gathered}$	$\begin{aligned} & 3.6 \\ & (90) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & (84) \\ & \hline \end{aligned}$	4.1	2	$\begin{array}{r} 3839.51 \\ (24771) \\ \hline \end{array}$	$\begin{gathered} 80 \\ (5.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 482.0 \\ & (218.6) \\ & \hline \end{aligned}$	$\begin{gathered} 240.0 \\ (108.8) \end{gathered}$	$\begin{gathered} 79.0 \\ (35.8) \end{gathered}$		
72	(1800)	24	(610)	$\begin{gathered} 7.2 \\ (180) \\ \hline \end{gathered}$	$\begin{aligned} & 3.6 \\ & (90) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & (84) \\ & \hline \end{aligned}$	3.8	2	$\begin{aligned} & 4526.62 \\ & (29244) \\ & \hline \end{aligned}$	$\begin{gathered} 70 \\ (5.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 551.0 \\ (249.9) \\ \hline \end{gathered}$	$\begin{gathered} 290.0 \\ (131.5) \\ \hline \end{gathered}$	$\begin{aligned} & 100.0 \\ & (45.4) \\ & \hline \end{aligned}$		
78	(1950)	24	(610)	$\begin{aligned} & 6.75 \\ & (169) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.75 \\ & (94) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & (75) \\ & \hline \end{aligned}$	5.2	2	$\begin{aligned} & 5410.60 \\ & (34907) \\ & \hline \end{aligned}$	$\begin{gathered} 85 \\ (6.0) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 868.0 \\ (393.7) \end{gathered}$	$\begin{gathered} 315.0 \\ (142.9) \end{gathered}$	$\begin{aligned} & 118.0 \\ & (53.5) \end{aligned}$		
84	(2100)	24	(610)	$\begin{aligned} & \hline 6.75 \\ & (169) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.75 \\ & (94) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & (75) \\ & \hline \end{aligned}$	4.6	2	$\begin{gathered} \hline 6221.13 \\ (40136) \\ \hline \end{gathered}$	$\begin{gathered} \hline 85 \\ (6.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 942.0 \\ (427.3) \\ \hline \end{gathered}$	$\begin{gathered} 350.0 \\ (158.0) \\ \hline \end{gathered}$	$\begin{aligned} & 130.0 \\ & (59.0) \\ & \hline \end{aligned}$		
96	(2400)	24	(610)	$\begin{aligned} & 6.75 \\ & (169) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.75 \\ & (94) \end{aligned}$	$\begin{aligned} & 3.0 \\ & (75) \\ & \hline \end{aligned}$	4.0	2	$\begin{aligned} & 8011.85 \\ & (51689) \\ & \hline \end{aligned}$	$\begin{gathered} 85 \\ (6.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 1495.0 \\ & (678.1) \end{aligned}$	$\begin{gathered} 367.0 \\ (170.5) \end{gathered}$	$\begin{aligned} & 144.0 \\ & (65.3) \end{aligned}$		
108	(2700)	24	(610)	$\begin{aligned} & \hline 6.75 \\ & (169) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.75 \\ & (94) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & (75) \\ & \hline \end{aligned}$	3.4	2	$\begin{gathered} 10029.75 \\ (64702) \\ \hline \end{gathered}$	$\begin{gathered} \hline 85 \\ (6.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 1682.0 \\ & (762.9) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 425.0 \\ (192.7) \\ \hline \end{gathered}$	$\begin{aligned} & 169.0 \\ & (76.7) \\ & \hline \end{aligned}$		
120	(3000)	24	(610)	$\begin{aligned} & 6.75 \\ & (169) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.75 \\ & (94) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & (75) \end{aligned}$	3.0	2	$\begin{gathered} 12271.84 \\ (79173) \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ (6.0) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 2093.0 \\ & (949.4) \end{aligned}$	$\begin{aligned} & 565.0 \\ & (256.2) \end{aligned}$	$\begin{aligned} & 183.0 \\ & (83.0) \end{aligned}$		

NOTES:

1. Concurrent Movements - Concurrent movements are developed when two or more movements in a pipe system occur at the same time.

If multiple movements exceed single arch design there may be a need for additional arches.
To perform calculation for concurrent movement when a pipe system design has more than one movement, please use the following formula:
$\frac{\text { Actual Axial Compression }}{\text { Rated Axial Compression }}+\frac{\text { Actual Axial Extension }}{\text { Rated Axial Extension }}+\frac{\text { Actual Lateral }(X)}{\text { Rated Lateral }(X)+}+\frac{\text { Actual Lateral }(Y)}{\text { Rated Lateral }(Y)}=/<1$
Calculation must be equal to or less than 1 for expansion joint to operate within concurrent movement capability.
2. Filled Arch Rubber Expansion Joints - Known as Style FA 233. The Series FA230 rubber expansion joints should be selected when there are 20\% or more solids being conveyed in the pipe system. The filled arch products are manufactured with seamless tube filled with a lower durometer rubber in the arch core. The filled arch product will have a 50\% reduced movement capability from the information provided in Table 4.
3. Pressure rating is based on 170° F operating temperature with a $4: 1$ safety factor. At higher temperatures, the pressure rating is reduced slightly. Hydrostatic testing at 7.5 times rated maximum catalogue pressure or design working pressure of pipe system for 10 minutes is available upon request.
4. Weights are approximate and vary due to length.
5. The degree of angular movement is based on the maximum rated extension.

6. Torsional movement is expressed when the expansion joint is at neutral length.

7. Calculation of Thrust (Thrust Factor). When expansion joints are installed in the pipeline, the static portion of the thrust is calculated as a product of the area of the I.D. of the arch of the expansion joint times the maximum pressure (design, test or surge) that will occur in the line. The result is a force expressed in pounds. Take Design, surge or test pressure X thrust factor to calculate end thrust.

8. Parts listed at $26^{\prime \prime} \mathrm{Hg} / 660 \mathrm{~mm}$ Hg vacuum have a design rating of $30^{\prime \prime} \mathrm{Hg} / 762 \mathrm{~mm} \mathrm{Hg}$ (full vacuum). Vacuum rating is based on neutral installed length, without external load. Products should not be installed "extended" on vacuum applications.
9. Limit rod unit weight consists of one rod with washers, nuts and two limit rod plates. Multiply number of limit rods needed for the application (as specified in the Fluid Sealing Association's Technical Handbook, Seventh Edifion or table 4 in this manual) to determine correct weights.

Garias 230

Style 231

Style 232

Gerias 2 ED FA

Style 232 FA

Style 230 Drilling Chart

Table 5		Standard Drilling for PROCO Rubber Expansion Joins							Thickness of Materims for Proco Rubler Exppunsion Joints							Conitro Unit Plate Detail			
Nominal Pipe Size Expansion Joint I.D. Inch /(mm)		Flange Dimensions ${ }^{2}$							Material Thickness ${ }^{1}$ for Bolt Length Requirements										
		Flange 0.D. Inch / (mm)		$\begin{aligned} & \text { Bolt Circle } \\ & \text { Inch / (mm) } \end{aligned}$			Size Of Holes Inch / (mm)		Retaining Rings Thickness Inch / (mm)		Rubber Flange Thickness Inch / (mm)			Max. Control ${ }^{4}$ Rod Plate Thickness Inch / (mm)		$\begin{aligned} & \text { Conitrol Rod }{ }^{6} \\ & \text { Plate 0.D. } \\ & \text { Inch / (mm) } \end{aligned}$		Maximum ${ }^{7}$ Rod Diameter Inch / (mm)	
102	(2550)	120.00	(3048.00)	114.50	(2008.30)	72	2.625	(66.7)	0.375	(9.53)	1.181	(33.00)		2.00	(50.8)	131.375	(3336.5)	2.550	(69.9)
108	(270)	126.75	(3219.45)	120.75	(3067.05)	72	2.625	(66.7)	0.375	(9.53)	1.181	(30.00)		2.000	(50.8)	138.125	(3508.4)	2.550	(69.9)
120	(3000)	140.25	(3562.35)	132.75	(3371.85)	76	2.875	(73.0)	0.375	(9.53)	1.181	(33.00)	\bigcirc 边	2.000	(50.8)	152.125	(3864.0)	3.000	(76.2)

Metric Conversion Formula: Nominal I.D. : in. x $25=\mathrm{mm}$; Neutral length: in. $\times 25.4=\mathrm{mm}$

Notes:

1. Limit/Control Rod length is determined by neutral length of rubber expansion joint, rated extension, control rod plate thickness, mating flange thickness and number of nuts. Consult PROCO for rod lengths.
2. Flange Dimensions shown are in accorcdance with ANSI B16.1 and ANSI B16.5 Class 125/150, AWWA C-207-07, Tbl 2 and 3 - Class D, Table 4 - Class E. Hole size shown is $1 / 8^{\prime \prime}$ larger than AWWA Standard.
3. Adjacent mating flange thickness is required to determine overal rod length and compression sleeve lengith (if required).
4. Plate thickness is based on a maximum width PROCO would use to design a Limit/Control Rod plate.
5. Flat Washers required ot ing splits and are by others.
6. Control rod plate O.D. installed dimension is based on a maximum O.D. Proco would supply.

7. Control rod diameter is based on a maximum diameter Proco would use to design a control rod.
8. Addifional flange dirling such as 300 LB ., PN10, PN16 and other special dirling's are available upon request.

A - Retaining Ring Thickness.
B - Rubber Flange Thickness.
C - Adiacent Mating Flange Thickness (By Others).
D - Control Unit Plate Thickness.
E - Double Nut Thickness is determined by Control Rod Diameter.
F - Control Rod Bolt Length is determined by A through E + OAL ${ }^{1}$.
C Control Rod Control Rod Plate O.D.
H - Maximum Rod Diameter

Limit Rads, Contral Rads \& Compression Sleeves

Definition

A control unit assembly is a system of two or more control rod units (limit rods, tie rods or compression sleeves) placed across an expansion joint from flange to flange to minimize possible damage caused by excessive motion of a pipeline. The control unit assemblies can be set ot the maximum allowable expansion and/or contraction of the rubber expansion joint. When used in this manner, control units are an addifional safety factor and can minimize possible damage to adjacent equipment.

Rubber expansion joints should be installed between two fixed anchor points in a piping system. The pipe system must be rigidly anchored on both sides of the expansion joint to control expansion or contraction of the line. Piping anchors must be capable of withstanding the line thrusts generated by internal pressure or wide temperatuve fluctuations.
When proper anchoring cannot be provided, CONTROL UNITS ARE REQUIRED. For un-anchored piping systems nuts shall be tightened snug against rod plate to prevent over extension due to pressure thrust created by expansion joint. Refer to "Thrust Factor in Table 2, note 5 in this manual.
Listed below are three (3) control unit configurations supplied by PROCO and are commonly used with rubber expansion joints in piping systems.

Known as a LIMIT ROD, this control unit configuration will allow an expansion joint to extend to a predetermined extension setting. Nuts shall be field set to no more than the maximum allowable extension movement of a rubber expansion joint (unless used in an un-anchored system). Refer to Table 2 in this manual for allowable movement capobilities. Spherical washers can also be furnished (upon request) to combot any "nut to plate" binding during offset. Consult the systems engineer for proper nut settings prior to system operation.

Known as a LIMIT/CONTROL ROD, this control unit configuration is used to allow specified pipe expansion (expansion joint axial compression) and pipe contraction (expansion joint axial extension) movements. Nuts shall be fied set to no more than the maximum allowable extension (unless used in an un-anchored pipe system) or compression of a rubber expansion joint. Refer to Table 2 in this manual for allowable movement capabilities. Internal and external nuts can also be field set to allow for no movement in the horizontal plane. This setting will allow the rubber to move laterally while keeping expansion joint thrust forces low on adjacent equipment. Spherical washers can also be furrished (upon request) to combat any potentiol "nut to plate" binding during offset. Limit/Control rods with internal nuts must be specified at the time of inquiry. Consult the systems engineer for proper nut settings prior to system operation.

Known as a COMPRESSION SLEEVE, this configuration is used to allow for specified pipe expansion (exponsion joint axial compression) and pipe contraction (exponsion joint extension) movements. Nuts shall be field set to no more than the maximum allowable extension (unless used in an un-anchored pipe system) of a rubber exponsion joint. Refer to Table 2 in this manual for allowable movement capabilifies. PROCO will supply each compression sleeve to allow for no axial movement unless otherwise specified by the purchaser. Compression sleeves shall be field trimmed to meet required allowable axial movement as set forth by system requirements. Spherical washers can also be furnished (upon request) to combot any potential "nut to plate" binding during offset. Consult the systems engineer for proper sleeve lengths prior to system operation.

The number of rods, control rod diameters and control rod plate thicknesses are important considerations when specifying control units for an application. As a minimum, specifying engineers or purchasers shall follow the guidelines as set forth in Appendix C of the Fluid Sealing Association's Technical Handbook, Seventh Edition. PROCO engineers its control unit assemblies to system requirements. Our designs incorporate on allowable stress of 65% of material yield for each rod and plate (rod and plate material to be specified by purchaser). Therefore, it is important to provide pressure and temperature ratings to PROCO when requesting control units for rubber expansion joints. It is also important to provide adjacent mating flange thickness or mating speciications to ensure correct rod lengths are provided.

1. Assemble expansion joint between pipe flanges in its monufactured facce-to-face length. Install the retaining rings funnished with the exponsion joint.
2. Assemble control rod plates behind pipe flanges as shown. Flange bolis or all thread studs through the control rod plate must be longer to accommodate the plate thickness. Control rod plates should be equally spoced oround the flange. Depending upon the size and pressure rating of the system, $2,3,4$, or more control/ limit rods may be required. Refer to Table 4 in this manual or to the Fluid Sealing Association's Technical Handbook, Seventh Edition, page 23 for control rod pressure ratings.
3. Insert contro//imit rods through top plate holes. Steel flat washers are to be positioned ot outer plate sufface.
4. If a single nut per unit is furnished, position this nut so that there is a gap between the nut and the steel flat washer. This gap is equal to the joints maximum extension (commencing with the nominal face-to-face length). To lock this nut in position, either "stake" the thread in two places or tack weld the nut to the rod. If two nuts are supplied, the nuts will create a "jamming" effect to prevent loosening. (Nuts should be snug agoinst flat washer and control rod plate when piping system is un-anchored.)
Note: Consult the manufacturer if there are any questions os to the rated compression and elongation. These two dimensions are crifical in setting the nuts and sizing the compression pipe sleeve (if supplied).
5. If there is a requirement for compression pipe sleeves, ordinary pipe moy be used, sized in lengith to allow the joint to be compressed to its normal limit.
6. If there is a requirement for optional spherical washers, these washers are to be positioned ot outer plate sufface and backed up by movable double nuts.

Table 6		Maximum Surge or Test Pressure of the Systems			
Nominal Pipe Size Expansion Joint I.D. Inch /(mm)		Number of Control Rods Recommended			
		2	4	6	8
2	(51)	661	-	-	
$\frac{4}{6}$	(102)	311	622	-	
6	(152)	186	371		
8	(203)	163	326	-	-
10	(254)	163	325	488	-
12	(305)	160	320	481	
14	(356)	112	223	335	-
16	(406)	113	227	340	453
18	(457)	94	187	281	375
20	(508)	79	158	236	315
22	(559)	85	171	256	342
24	(610)	74	147	221	294
26	(660)	62	124	186	248
28	(711)	65	130	195	261
30	(762)	70	141	211	281
32	(813)	63	125	188	251
34	(864)	72	143	215	286
36	(914)	69	138	207	276
38	(965)	63	125	188	251
40	(1016)	42	85	127	169
42	(1067)	48	96	144	192
44	(1118)	44	88	133	177
46	(1168)	41	82	122	163
48	(1219)	40	81	141	161
50	(1270)	37	75	112	150
52	(1321)	35	70	105	140
54	(1372)	43	86	128	171
56	(1422)	40	80	120	160
58	(1473)	38	75	113	150
60	(1524)	35	71	106	141
62	(1575)	33	66	100	133
66	(1676)	30	59	89	119
72	(1829)	25	50	75	101
78	(1981)	28	56	84	112
84	(2134)	24	49	73	98
90	(2286)	26	53	79	106
98	(2889)	29	58	86	115
102	(2591)	25	51	76	102
108	(2743)	23	46	75	92
120	(3048)	18	37	56	75

[^2]
Installation Instructions for Non-Metallic Expansion Joints

Make sure the expansion joint rating for temperature, pressure, vacuum and movements match the system requirements. Contact the manufacturer for advice if the system requirements exceed those of the expansion joint selected. Check to make sure the elastomer selected is chemically compatible with the process fluid or gas.

Expansion joints are normally not designed to make up for piping misalignment errors. Piping should be lined up within $1 / 8^{\prime \prime}$. Misalignment reduces the rated movements of the expansion joint and can induce severe stress and reduce service life. Pipe guides should be installed to keep the pipe aligned and to prevent undue displacement.

Solid anchoring is required wherever the pipeline changes direction and expansion joints should be located as close as possible to anchor points. If piping is not adequately anchored, control rods should be used. If anchors are not used, pressure thrust may cause excessive movement damaging the expansion joint.

Piping must be supported by hangers or anchors so expansion joints do not carry any pipe weight.

Install the expansion joint against the mating pipe flanges and install bolis so that the bolt head and washer are against the retoining rings. If washers are not used, flange leakage can result - particularly at the split in the retaining rings. Flange-to-flange dimension of the expansion joint must match the breech opening. Make sure the mating flanges are clean and are flat faced type or no more than $1 / 16^{\prime \prime}$ raised foce type. Never install expansion joints that utilize split retaining rings next to wofer type check or butterfly valves. Serious damage can result to a rubber joint of this type unless installed agoinst full face flanges.

Table 7 shows the recommended torque ranges for non-metallic expansion joints with fullfaceed rubber flanges: Torque specifications are approximate. Tighten bolis in stages using cross-bolt tightening pattern. If the joint has integral fabric and rubber flanges, the bolts should be tight enough to make the rubber flange OD bulge between the retaining rings and the mating flange. After installation, the system should be pressurized and examined to confirm a proper seal. Torque bolts sufficiently to assure leak free operation ot hydrostatic test pressure.

Ideal storage is in a warehouse with a relatively dry, cool location. Store flanges face down on a pollet or wooden plafform. Do not store other heary items on top of expansion joints. Ten year sheff life can be expected with ideal conditions. If storage must be outdoors, place on wooden platform and joints should not be in contact with the ground. Cover with a tarpaulin.

Table 7	Approximate Torque Values
Size	
$1^{\prime \prime}$ THRU 2"	$20.40 \mathrm{ft} / \mathrm{lbs}$
$2.5^{\prime \prime}$ THRU 5"	$25 \cdot 60 \mathrm{ff} / \mathrm{lbs}$
$6^{\prime \prime}$ THRU 12"	$35 \cdot 140 \mathrm{tt} / \mathrm{lbs}$
$14^{\prime \prime}$ THRU $18^{\prime \prime}$	$50 \cdot 180 \mathrm{ft} / \mathrm{lbs}$
20" THRU 24"	$60 \cdot 200 \mathrm{tt} / \mathrm{lbs}$
$26^{\prime \prime}$ THRU 40"	$70.300 \mathrm{ft} / \mathrm{lbs}$
42" THRU 50"	$80 \cdot 300 \mathrm{ft} / \mathrm{lbs}$
$52^{\prime \prime}$ THRU 60"	$100 \cdot 400 \mathrm{ft} / \mathrm{lbs}$
$66^{\prime \prime}$ THRU 72"	$200 \cdot 500 \mathrm{ft} / \mathrm{l} \mathrm{bs}$
$78^{\prime \prime}$ THRU 90"	$300.600 \mathrm{ft} / \mathrm{lbs}$
$96^{\prime \prime}$ THRU 108"	$400-700 \mathrm{ft} / \mathrm{l} / \mathrm{bs}$
$120^{\prime \prime}$	$500 \cdot 800 \mathrm{ft} / \mathrm{lbs}$

Do not lift with ropes or bars through the bolt holes. If liffing through the bore, use padding or a saddle to distribute the weight. Make sure cables or forklift tines do not contact the rubber. Do not let expansion joints sit vertically on the edges of the flanges for any period of time.
A. Do not insulate over a non-metallic exponsion joint; however, if insulation is required, it should be made removable to permit easy access to the flanges. This facilitates periodic inspection of the tightness of the joint boling.
B. It is acceptable (but not necessary) to lubricate the expansion joint flanges with a thin film of graphite dispersed in glycerin or water to ease disassembly of a later time.
C. Do not weld in the near vicinity of a non-metallic joint.
D. If expansion joints are to be installed underground, or will be submerged in water, contact manufacturer for specific recommendations.
E. If the expansion joint will be installed outdoors, make sure the cover material will withstand ozone, sunlight, etc.
F. Check the tightness of lead.free flanges two or three weeks offer installation and retighten if necessary.

Warning: Expansion joints may operate in pipelines or equipment carrying fluids and/or gasses at elevated temperature and pressures and may transport hazardous materials. Precautions should be taken to protect personnel in the event of leakage or splash. Rubber joints should not be installed in areas where inspection is impossible. Make sure proper drainage is available in the event of leakage when operating personnel are not available.

Piping System Layout Examples

2431 North Wigwam Dr. (95205)
P.O. Box 590 • Stockton, CA 95201-0590 • USA
 Association

Indestrial Distributor Co-op

REPRESENTED BY:

[^0]: Neutral lengths in RED are the recommended minimum lengths.
 Metric Conversion Formula: Nominal I.D. : in. $\times 25=$ mm; Neutral length: in. $\times 25.4=m m$

[^1]: Neutral lengths in RED are the recommended minimum lengths.
 Metric Conversion Formula: Nominal I.D. : in. x $25=\mathrm{mm}$; Neutral length: in. x $25.4=\mathrm{mm}$

[^2]: Notes:

 1. Pressures listed above do not relate to the actual design pressure of the expansion joint products, but are the maximum surge or pressure for a specific control rod nominal pipe size.
