



**No Air Loss Drain** 

Condensate Management

**People. Passion. Performance.** 

# **Removal of Contaminants in Compressed Air Condensate**

During the compression process, contaminants such as dust particles and water vapor from the atmospheric air are mixed with the hot oil. At the end of the process, when the air has cooled down, contaminated condensate is generated, which is an unavoidable, expensive and ugly by-product of a compressed air system.

If allowed to collect anywhere in the distribution system, especially in an air receiver, moisture separator or filter bowl, condensate will overflow into the compressed air system causing damage to equipment and processes. Contaminated condensate is considered hazardous waste and should be treated and disposed of as such. Current legislation requires condensate treatment before disposal.

CP's Condensate Separator series (CPP) allows you to minimize your compressed air waste treatment costs and care for the environment all at once.

CPP solution uses a patented multi-stage filtration process that separates contaminants from condensate. The contaminants are trapped in the 1<sup>st</sup> stage filter and polished in the 2<sup>nd</sup> stage tower leaving only clean water to be drained.

Be fully compliant with the most stringent environmental regulations at minimal operation cost with our easy to install solution!

## **CPP Condensate Separator Series**

### **Features**

- Removes all compressor lubricants
- Light weight, easy to drain
- Easy change disposable filter elements
- · Convenient replacement filter kit with watertight disposal container
- Simple set up
- Maintenance indicator
- · Robust indifferent to shock and vibrations

### **Did you know?**

If you are disposing of your water condensate, without separating potential oil by-product, you could be **VIOLATING THE LAW**!

Section 309 of the Federal Water Pollution Control Act states that even negligent violations could mean at least \$2,500 per day in fines, including potential jail time.

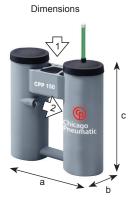
Protect yourself and your business by setting up a **Chicago Pneumatic Condensate Management system** TODAY!



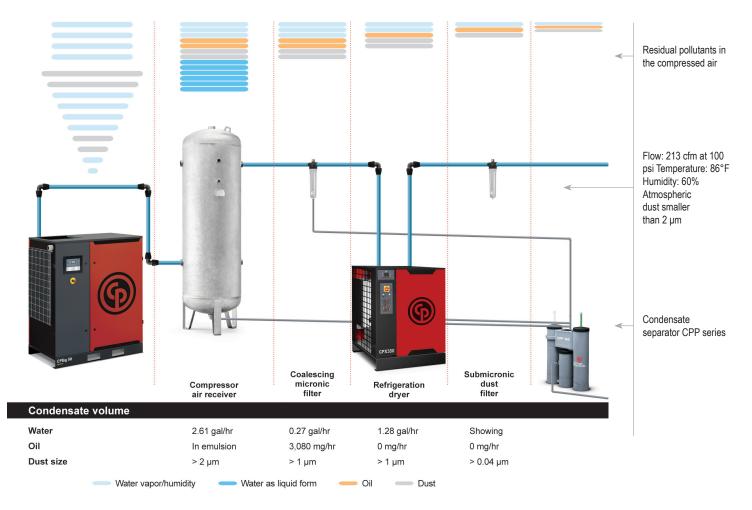
# **Technical Data**

Treatment capacity in an installation **with dryer**. Condensates are collected from compressor(s), air receiver(s), dryer(s), filter(s) for a daily operation of 12 hours.




|                          |       | Cold climate | 9    | Ter  | nperate clim | ate  | Hot  | t climate |  |
|--------------------------|-------|--------------|------|------|--------------|------|------|-----------|--|
| Ambient temperature (°F) | 40    | 50           | 60   | 68   | 77           | 86   | 95   | 104       |  |
| Relative humidity (%)    | 60    |              |      |      | 60           |      |      | 70        |  |
|                          |       |              |      |      | in cfm       |      | ·    |           |  |
| CPP-40                   | 291   | 198          | 139  | 101  | 74           | 56   | 36   | 28        |  |
| CPP-100                  | 789   | 537          | 378  | 274  | 201          | 151  | 99   | 77        |  |
| CPP-150                  | 1204  | 820          | 577  | 418  | 307          | 231  | 151  | 118       |  |
| CPP-360                  | 2949  | 2008         | 1414 | 1023 | 752          | 564  | 371  | 288       |  |
| CPP-615                  | 5025  | 3423         | 2410 | 1743 | 1282         | 962  | 632  | 490       |  |
| CPP-850                  | 6852  | 4667         | 3287 | 2377 | 1748         | 1311 | 862  | 669       |  |
| CPP-1200                 | 9801  | 6676         | 4700 | 3400 | 2500         | 1875 | 1232 | 956       |  |
| CPP-2430                 | 19602 | 13351        | 9401 | 6801 | 5001         | 3750 | 2466 | 1913      |  |

Treatment capacity in an installation **without dryer**. Condensates are collected from compressor(s), air receiver(s), filter(s) for a daily operation of 12 hours.




|                               |       | Cold climate                                         | )     | Tei  | nperate clim | ate        |      | Hot cli | imate |
|-------------------------------|-------|------------------------------------------------------|-------|------|--------------|------------|------|---------|-------|
| Ambient temperature (°F)      | 40    | 50                                                   | 60    | 68   | 77           | 86         | 9    | 5       | 104   |
| Relative humidity (%)         |       | 60                                                   |       |      | 60           |            |      | 70      | )     |
|                               |       |                                                      |       |      | in cfm       |            |      |         |       |
| CPP-40                        | 374   | 255                                                  | 180   | 129  | 95           | 72         | 4    | 7       | 36    |
| CPP-100                       | 980   | 667                                                  | 470   | 340  | 250          | 188        | 12   | 3       | 95    |
| CPP-150                       | 1454  | 990                                                  | 697   | 504  | 371          | 278        | 18   | 3       | 142   |
| CPP-360                       | 3613  | 2461                                                 | 1733  | 1254 | 922          | 692        | 45   | 4       | 353   |
| CPP-615                       | 6312  | 4300                                                 | 3028  | 2190 | 1610         | 1208       | 79   | 4       | 616   |
| CPP-850                       | 8472  | 5770                                                 | 4063  | 2939 | 2161         | 1621       | 10   | 65      | 827   |
| CPP-1200                      | 12085 | 8231                                                 | 5796  | 4193 | 3083         | 2313       | 15   | 20      | 1180  |
| CPP-2430                      | 24171 | 16463                                                | 11592 | 8385 | 6166         | 4624       | 30   | 40      | 2358  |
| Service (hr)                  | 8     | 10                                                   | 12    | 14   | 16           | 18         | 20   | 22      | 24    |
| Correction factor             | 1.50  | 1.20                                                 | 1.00  | 0.86 | 0.75         | 0.67       | 0.60 | 0.55    | 0.50  |
|                               |       | Capacity based on a residual oil content of 4 mg/gal |       |      |              |            |      |         |       |
| Relative humidity (%)         |       | 20                                                   | 30    | 40   | 50           | 60         | 70   | 80      | 90    |
| Correction factor             |       | 3.38                                                 | 2.12  | 1.54 | 1.21         | 1.00       | 0.85 | 0.74    | 0.66  |
| Oil content of 3 mg/gal       |       | Multiply below capacity by 2/3                       |       |      |              |            |      |         |       |
| Condensate made of polyglycol |       |                                                      |       |      | Above        | e capacity |      |         |       |

|          | Dimensions (in) |      |      | Weight | Connections (G/NPT) |       |
|----------|-----------------|------|------|--------|---------------------|-------|
|          | а               | b    | с    | (lb)   | (in)                | (in)  |
|          |                 |      |      |        | 1                   | 53    |
| CPP-40   | 18.5            | 6.5  | 23.6 | 9      | 1 x ½               | 1 x ½ |
| CPP-100  | 27              | 10   | 29.5 | 29     | 2 x ½               | 1 x ½ |
| CPP-150  | 27              | 10   | 29.5 | 33     | 2 x ½               | 1 x ¾ |
| CPP-360  | 29.5            | 21.5 | 35.5 | 55     | 2 x ¾               | 1 x ¾ |
| CPP-615  | 29.5            | 21.5 | 40.5 | 57     | 2 x ¾               | 1 x ¾ |
| CPP-850  | 37              | 25.5 | 43   | 62     | 2 x ¾               | 1 x ¾ |
| CPP-1200 | 37              | 27   | 43   | 66     | 2 x ¾               | 1 x ¾ |
| CPP-2430 | 37              | 46.5 | 43   | 132    | 2 x ¾               | 1 x ¾ |



# **Condensate Separator in a Compressed Air System**



This drawing illustrates that during the air treatment process, 4.16 gallons of water per hour, plus dust, and 3,080 mg/hr of oil are produced. The CPP Condensate Separator will reduce this oil content to 4 mg/gal. With such a small residual amount, it is possible to discharge the condensate, with no risk to the environment.

# Simple Concept Compact and Easy to Use

The patented technology of the Chicago Pneumatic CPP Condensate Separator minimizes the collection and treatment cost of compressed air waste products.

Compatible with all compressed air condensate, this universal system can easily be integrated into any compressed air installation.

Two filtration stages (oleophilic filtration and activated carbon filtration) give a guarantee of minimum oil content in the condensate before disposal.



# **Universal System that Controls Residual Oil Level**

The Chicago Pneumatic CPP range of separators eliminates oil through multi-stage filtration rather than the conventional gravity systems which have limitations on the type of condensate that can be treated. As a result, the CPP separator capacity is not linked to the type of emulsion collected since it can treat the same volume of condensate whether saturated with mineral oil, semi-synthetic oil or polyglycol. Here is the step-by-step process of how the CPP filters work:

- 1. Collection of untreated condensate enters the system.
- 2. Condensates are collected though mufflers located in the integral expansion chamber where first stage separation takes place by depressurization.
- 3. The depressurized condensate then flows into column A and passes through an oleophilic media, made of oil absorbing fibers which allow water to pass through.
- 4. The oleophilic filter floats in column A.
- 5. This is advantageous for absorbing residual oil floating on the surface.
- 6. The additional weight of the oil causes the filter to gradually sink as it gets more saturated, which ensures that clean filter material is always in contact with the surface of the water.
- 7. The indicator stick at the top of column A shows the status of the filter, as the filter is consumed the stick sinks. The filter has to be changed just before its fully submerged.
- 8. The prefiltered condensate is then directed into column B.

# A Clean Way to Eliminate Condensate

#### **A Universal System**

By using oleophilic oil filtration, the system is able to deal with an extensive range of condensates, and pre-analysis of the condensate is unnecessary.

Oleophilic filtration captures the oil even in an unstable emulsion, which cannot normally be separated using gravity separation.

#### Easy to Use

CPP condensate separators are resistant to vibration, shock and splashes that might occur during condensate injection. This treatment system is therefore compatible with all types of drains (timer, level detection...).

#### **Reliable Design**

Large volume of the expansion chamber ensures reduced emulsion of condensate. Oil is captured in the oleophilic filter. An oil can is therefore not required so oil collection is safe and reliable.

#### **Condensate Disposal of Controlled Quality**

Residual oil is captured in the filter, which guarantees quality of the condensate—even in an unstable system (condensate emulsion).

#### Simple, Low-Cost Maintenance

A service indicator notifies the user to change the filter before it becomes saturated.

- Column B contains activated carbon, and absorbs the remaining oil in the condensate. The large capacity of the system prevents any risk of spillage in case of blockage of the system or if the system produces excessive quantities of condensate.
- Clean water exits the disposable filter through the outlet port and is discharged from the OWS purifier.
  Oil content is approximately 4 mg/gal, at reference conditions, at the outlet, a level that allows disposal of the condensate without risk to the environment.



# **Condensate Separator Service Kits**

#### Kit A (First 6 Months)

Comprised of material to change the oleophilic filter(s) once. It is for the first service after installation where the condensate is in normal condition. After this, kit B or D can be used (depending on the environment). This assumes a 12h usage day, please adjust according to actual usage.

#### Kit B (12 Months)

Comprised of material to change oleophilic filter(s)twice and the activated filter(s) once in a year. This kit should be used with the condensate in normal conditions. The lifetime of the carbon filter is then considered twice as long as the oleophilic filters. This assumes a 12h usage day, please adjust according to actual usage.

#### Kit D (Higher Oil Content - 6 months)

Comprised of material to change oleophilic filter(s)and carbon filter together once after 6 months. This kit should be used with the condensate in harsh conditions. The lifetime of the carbon filter is then considered as long as the oleophilic filters. This assumes a 12h usage day, please adjust according to actual usage.

#### Kit X (Special Oil - 6 months)

Comprised of material to change oleophilic filter(s)once and replace the carbon filter by an OGC filter. It can be used to process any kind of condensate mixture containing any kind of compressor oil (polyglycol based oils, silicon based lubricants, and many types of emulsions)

| KITS INCLUDE            | Α         | В  | D | x  |
|-------------------------|-----------|----|---|----|
| CPP-40, 100 & 150       | ) KITS    |    |   |    |
| Oleophilic filter       | 1         | 2  | 1 | 1  |
| Activated carbon filter | 0         | 1  | 1 | 0  |
| OGC filter              |           | NA |   | 1  |
| Diffuser                |           |    | 1 |    |
| Muffler                 |           |    | 1 |    |
| CPP-360, 615, 850 & 1   | 1200 KITS |    |   |    |
| Oleophilic filter       | 1         | 2  | 1 | 1  |
| Small oleophilic filter | 1         | 2  | 1 | 1  |
| Activated carbon filter | 0         | 2  | 2 | NA |
| OGC filter              |           | NA |   | 2  |
| Diffuser                | 1         | 2  | 1 | 1  |
| Muffler                 | 2         | 4  | 2 | 1  |
| CPP-2430 KIT            | S         |    |   |    |
| Oleophilic filter       | 2         | 4  | 2 | 2  |
| Small oleophilic filter | 2         | 4  | 2 | 2  |
| Activated carbon filter | 0         | 4  | 4 | NA |
| OGC filter              |           | NA |   | 4  |
| Diffuser                | 1         | 2  | 1 | 1  |
| Muffler                 | 2         | 4  | 2 | 2  |

### **Cyclonic Condensate Separators**

| MODEL   | SIZE (in) | SCFM |
|---------|-----------|------|
| CCS37.5 | 0.375     | 70   |
| CCS50   | 0.5       | 91   |
| CCS75   | 0.75      | 138  |
| CCS100  | 1         | 215  |
| CCS150  | 1.5       | 452  |
| CCS200  | 2         | 753  |
| CCS250  | 2.5       | 1447 |

\* Note: Thread connections are BSP according to ISO 7/1. Adapters to connect from BSP ISO 7/1 to NPT ANSI B2.1 will have to be supplied locally.

| MODEL   | RECOMMENDED COMPRESSORS                                                                                          |
|---------|------------------------------------------------------------------------------------------------------------------|
| CCS37.5 | CPN3-15, QRS3-15, QRS20 (175psi)                                                                                 |
| CCS50   | QRS20 (100-150psi), QRS25 (150-175psi), QRS30 (175psi), CPVS20                                                   |
| CCS75   | QRS25 (100-125psi), QRS30 (100-150psi), CPVS25-30                                                                |
| CCS100  | CPC40, CPC40G, CPC50 (150-175psi), CPC50G (150-175psi), CPC60 (175psi), CPVS40                                   |
| CCS150  | CPC50 (100-125psi), CPC50G (100-125psi), CPC60 (100-150psi), CPC60G, CPD75, CPD75G, CPD100, CPE100 (125-175psi), |
|         | CPE125 (175psi), CPVS50, CPVS60, CPVS75, CPVS95                                                                  |
| CCS200  | CPE100 (100psi), CPE125 (100-150 psi), CPE150, CPF175 (125-175psi), CPF200 (175psi), CPVS100, CPVS125, CPVS150   |
| CCS250  | CPF175 (100psi), CPF200 (100-150psi), CPF250, CPF300, CPVS175, CPVS200, CPVS250                                  |



### **PNL No Air Loss Drain Series**



### **Features & Specifications**

- · Regular and aggressive condensate
- Alarm function
- Dry contact for alarm
- Contact for external test
- Self cleaning function
- 110 Vac Standard; 24 Vac/dc, 48 Vac, 1000 Vac, 200 Vac, 230 Vac also available

### **Benefits**

- True "No Air Loss" Design Maximum energy savings
- · Highest Reliability Unaffected by dirt and debris
- Lowest Maintenance Reduced time and labor costs
- Fully Automatic Monitors level and function
- Integrated Alarm With remote detection
- Sensor Controlled Safe for all condensate types with unparalleled performance

# **Technical Data**

### **Standard Pressure**

| NO AIR LOSS DRAINS |               |                       |           |        |               |  |  |
|--------------------|---------------|-----------------------|-----------|--------|---------------|--|--|
| MODEL              | MAX FLOW RATE | CONNECTIO             | NS NPT    | WEIGHT | W X H<br>(in) |  |  |
| MODEL              | (SCFM)        | INLET                 | OUTLET    | (lb)   |               |  |  |
| PNL-200            | 100           | 1 x 0.50"             | 1 x 0.25" | 1.8    | 6.5 x 4.6     |  |  |
| PNL-450            | 225           | 1 x 0.50"             | 1 x 0.25" | 2.2    | 6.7 x 5       |  |  |
| PNL-1000           | 500           | 3 x 0.50"             | 1 x 0.50" | 3.6    | 8.3 x 6.2     |  |  |
| PNL-3600           | 1,300         | 2 x 0.50"             | 1 x 0.50" | 4.4    | 8.4 x 6.4     |  |  |
| PNL-10K            | 5,400         | 3 x 0.75"             | 1 x 0.50" | 4.4    | 9.9 x 7.1     |  |  |
| PNL-100K           | 50,000        | 2 x 0.75" & 1 x 1.00" | 1 x 0.50" | 13     | 11.3 x 11     |  |  |

Max. Working Pressure: 232 psig
Min. Working Pressure: 12 psig
Temp. Range: 34 °F - 140 °F

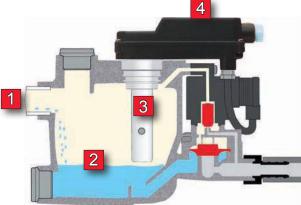


### **High Pressure**

| NO AIR LOSS DRAINS     |                                                |           |            |        |           |  |  |  |
|------------------------|------------------------------------------------|-----------|------------|--------|-----------|--|--|--|
| HIGH PRESSURE          | MAX FLOW RATE                                  | CONNECT   | TIONS NPT  | WEIGHT | WХH       |  |  |  |
| MODEL                  | (SCFM)                                         | INLET     | OUTLET     | (lb)   | (in)      |  |  |  |
| PNL-600 HP             | 280                                            | 1 x 0.50" | 1 x 0.375" | 2      | 6.2 x 5.6 |  |  |  |
| PNL-3600 HP            | 1,300                                          | 2 x 0.50" | 1 x 0.375" | 4.4    | 8.4 x 6.4 |  |  |  |
| * Max Working Pressure | Max Working Pressure: 915 psig for PNI -600 HP |           |            |        |           |  |  |  |

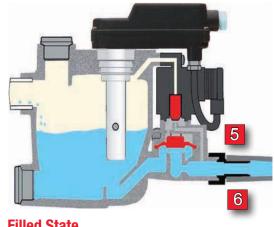
Max. Working Pressure: 915 psig for PNL-800 HP 725 psig for PNL-3600 HP Min. Working Pressure: 12 psig \*\* Temp. Range: 34 °F - 140 °F






### Over 100 years of experience

Since 1901 the Chicago Pneumatic name has represented highperformance tools and equipment designed for an extensive range of applications. Today, Chicago Pneumatic has a global reach, with local customer centers around the world. Chicago Pneumatic products are tailored to the needs of the industrial, vehicle service, and construction markets. Every day we develop and manufacture new products that are meant to meet your demands not only today, but tomorrow as well.


To learn more about our extensive range of tools, hydraulic attachments, industrial and portable compressors, accessories and workshop equipment, please visit www.cp.com.

# **PNL No Air Loss Drain Series** How it works



#### **Empty State**

- Condensate enters side inlet port.
  - Condensate level begins to rise.
- Condensate level activates sensor.
- Sensor signals control board. Control board activates solenoid valve. Solenoid valve stops pilot air flow to diaphragm. Condensate pushes diaphragm open.



### **Filled State**

5

Open diaphragm provides condensate discharge path. Condensate discharge begins. Reservoir level begins to fall. Reservoir level drops below sensor. Sensor deactivates solenoid valve. Pilot air closes diaphragm before level drops below discharge port.



Condensate discharge completed. Reservoir begins to fill and cycle repeats.



The Compressed Air and Gas Institute, CAGI, is an organization dedicated to improving the compressed air industry through established standards. As a proud member of CAGI, CP Compressors publishes all technical data in accordance with CAGI/PNEUROP PN2CPTC2 guidelines and voluntarily allows products to be selected for participation in CAGI's Performance Verification Program. With CP Compressors, our customers know they are receiving the excellent performance that we publish.

# Chicago Pneumatic

**CP** Compressors 1800 Overview Drive Rock Hill, SC 29730 1-877-861-CPAC (2722)

CP Compressors Canada 2900 Argentia Rd. Unit 13 Mississauga, Ontario L5N 7X9 1-800-513-3782

### www.cpcompressors.com

© 2016 Chicago Pneumatic. All Rights Reserved. Content is subject to change without notice. 06/16 001

For more information, call 877.861.2722.



